header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access

General Orthopaedics


The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress, 2015. PART 3.


Kinematics of the knee change during the full range of flexion [1]. The lateral femoral condyle (LFC) rolls back progressively through the entire range of flexion. The medial femoral condyle (MFC) does not move back during the first 110 degrees, but from 110 to 160 degrees it moves back by 10mm. This dual arc makes anatomical knee design a challenging task. In medial rotation, during flexion, the MFC stays in place, but the LFC moves forward in extension and backward in flexion. In lateral rotation the LFC stays still while the MFC moves back and forward in flexion and extension. During central rotation both condyles move reciprocally. However the knee is stable against an anteriorly or posteriorly directed force. It is important that all these degrees of freedom and stability are reproduced in total knee replacement (TKR) design.

Furthermore, the two femoral condyles together form a spiral. Like the threads of a screw in a nut they allow medio-lateral translation of the femur [2] in the tibial reference frame. During flexion the knee centre moves laterally nearly 20% of the width of the tibial plateau and in extension the femur translates medially. This medio-lateral translation occurs in the natural normal knee joint. This has special significance in knee design because the natural femur (along with the trochlea) moves laterally in flexion, allowing the patella to be sited laterally, while most regular TKRs drive the patella medially. In order to test this anomaly we studied patellar maltracking in vivo and in cadavers.

In vivo tracking studies using a patellar tracker during total knee replacement demonstrated average patellar maltracking of 10mm with regular TKR designs. Experiments on 22 cadaveric limbs using loaded quadriceps mechanism and trackers on the femur, tibia and patella, showed that in the natural knee the patella tracked medially by an average of 5mm. In regular TKRs the patella tracked medially. Compared to a normal knee, the patella in these designs maltracked on average by 10mm. Spiral condyles applied to the same bone cuts in the cadavers allowed the patella tracking to return to the expected lateral position in flexion.

This has application to total knee replacement design. Unless the spiral design is incorporated in the condyles, patellar maltracking is inevitable and is likely to cause lateral knee pain and stiffness post-operatively.