header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



The 27th Annual Meeting of the European Orthopaedic Research Society (EORS), Maastricht, The Netherlands, 2–4 October 2019.


Although 80% of fractures typically heal without any problems, there is a small proportion (<20%) that suffer complications such as delayed healing and potential progression to non-union. In patients with healing complications, the coordinated regulation between pro- and anti-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-1 receptor antagonist (IL-1Ra) respectively, is often dysregulated. The aim of this study is to develop a therapeutic strategy based on the local delivery of genes to reparative mesenchymal stromal cells (MSCs) migrating into the local fracture microenvironment, thereby promoting a more favourable healing environment to enhance fracture repair. Our approach involves the local delivery of nanoparticles complexing the non-viral vector polyethyleneimine (PEI) with therapeutic plasmid DNA (pDNA) encoding for IL-1Ra.

pDNA encoding green fluorescent protein and Gaussia luciferase were used as reporter genes to determine the transfection efficiency of both rat and human MSCs using flow cytometry and to assess the transgene expression profile using a luciferase expression assay. The effect of transfection with PEI on the viability of MSCs was assessed using the metabolic assay Cell Titer Blue and dsDNA quantification. Levels of IL-1Ra produced by cells following transfection with nanoparticles encoding IL-1Ra was assessed using enzyme-linked immunosorbent assays (ELISA). HEK-Blue IL-1β reporter cells, which secrete alkaline phosphatase in response to IL-1β stimulation, were used to confirm that the IL-1Ra produced by transfected cells is functionally active, i.e. the successful antagonism of IL-1β bioactivity.

We have determined that using PEI-based nanoparticles we can achieve a transfection efficiency of 14.8 + 1.8% in rat MSCs. Transgene expression was found to be transient, with a peak in expression at 7 days post-transfection and a gradual decrease over time, which was maintained for up to 4 weeks. Using an optimized concentration of PEI, the impact of the nanoparticles on MSC viability was limited, with no significant difference in cellular metabolic activity compared to non-transfected cells at 10 days post-transfection. We have additionally demonstrated the capacity to successfully transfect both rat and human MSCs with pDNA encoding for IL-1Ra, resulting in enhanced levels of IL-1Ra, which is functionally active.

The use of non-viral gene therapy to locally deliver immunomodulatory genes, such as IL-1Ra, to MSCs presents a promising strategy to enhance bone healing. Specifically, the transgene expression levels achieved with such an approach can remain therapeutically effective and are transient in nature, presenting an advantage over other methods such as recombinant protein delivery and viral-based gene delivery methodologies.