header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:



Full Access



The 28th Annual Meeting of the European Orthopaedic Research Society (EORS), held online, 17–18 September 2020.



With promising antibiofilm properties, rifampicin is considered as a cornerstone in the complementary treatment of bone and joint infections. But, achieving an adequate concentration of rifampicin long-term in bone tissue is a challenge. Long-term systemic administration also comes with concomitant side effects. Thus, local delivery of rifampicin in a carrier to ensure the high local concentration of antibiotic in surgical site after intervention due to infection could be a valuable alternative. However, an ideal platform for local delivery of rifampicin is still lacking. A calcium sulphate/hydroxyapatite (CaS/HA) (Cerament, Bonesupport AB, Sweden) biomaterial was used as a local delivery platform. Here we aimed 1) to evaluate the injectability of CaS/HA hand-mixed with rifampicin at various concentrations up to maximum one daily dose used systemically in clinical practice 2) to test a clinically used and commercially available mixing device containing the biphasic ceramic with rifampicin.

Materials & Methods

Three different concentrations (100 mg, 300 mg and 600 mg) of rifampicin powder (Rifampicin Ebb, Sanofi S.P.A, Italy) diluted in 5 mL of mixing solution (C-TRU, Bonesupport AB, Sweden) were used. Rifampicin solution was mixed to the CaS/HA powder and the injectability of the CaS/HA plus rifampicin composite was evaluated by extruding 250 µL of paste manually through a graduated 1 mL syringe connected to an 18G needle (Ø=1.2 mm, L=4 cm). Mixing was done with a spatula for 30 s at 22°C ±1°C. Total weight of the paste before and after extrusion were measured. To normalize the amount of composite that remained in the needle and syringe tip after injection, the mean of the paste extruded from the syringe at 3 min was calculated for the tested concentrations (normalized value). Injectability (%) was calculated by dividing the weight of the paste extruded from the syringe with normalized value. Each test was repeated for three times at various time points (3, 5, 7 and 9 min). Additionally, 300 mg rifampicin was chosen to mix with the CaS/HA in a commercially available mixing system, which is used clinically.


All three combinations of CaS/HA plus rifampicin (100 mg, 300 mg & 600 mg) could be completely extruded from 1 mL syringes at 3 min. At 5 min, 100 mg & 300 mg could still be injected, whereas 600 mg was uninjectable or solidified. At 7 min, rifampicin 100 mg & 300 mg showed 34% and 11% of injectability respectively. At 9 min, no injectability was observed. The material was completely set within 15 minutes with all concentrations. With commercial mixing system, at the recommended injection time of 4 min, 78% of the CaS/HA plus rifampicin (300 mg) composite could be injected.


The injectability was reduced with the increasing concentration of rifampicin. CaS/HA plus rifampicin (100 mg and/or 300 mg) could be used by hand mixing and transferred to a syringe or by using an available mixing system containing the ceramic. For higher concentrations of rifampicin, the rheological properties of the ceramics have to be modified for injectability.