Abstract
Aim
Treatment of infected and non-infected non-unions remain a major challenge after orthopedic fracture-related surgery. In clinical practice, several revision surgeries are usually required, including a radical debridement and exchange of implants, to control or even eradicate the infection to finally achieve bone healing. However, a clear treatment algorithm in clinical practice may be difficult to follow due to the heterogeneous patient population. Thus, so controlled settings for research purposes is better achieved in standardized animal studies.
So far, there exists no multi-stage animal model that can be realistically transferred to the clinical situation in humans. The importance of such a model is obvious in order to be able to investigate different therapy concepts for infected and non-infected non unions.
Methods
In 20 female Sprague-Dawley rats, a critical size defect by a femur osteotomy with 5 mm width was done. The periosteum at the fracture zone was cauterized proximal and distal to the osteotomy to achieve an hypovascularized situation. After randomization, 10 animals were intramedullary infected with a multisensible Staph. aureus strain (103 CFU). After 5 weeks, a second surgery was performed with removing the K-wire, debridement of the osteotomy-gap and re-osteosynthesis with an angle-stable plate. After further 8 weeks all rats were euthanized and underwent biomechanical testing to evaluate bone consolidation or delayed union, respectively. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, by the score of Lane and Sandhu and to quantify callus formation and the mineralized area of the callus.
Results
5 weeks after the first surgery a non-union had formed in all septic and aseptic animals. According to the Lane and Sandhu score a significantly higher callus formation was found in the infected group. In all infected animals, the inoculated Staph. aureus strain was detected during the revision surgery.
8 weeks after the second surgery no bone healing could be detected in the ยต-CT analysis in both groups and biomechanical testing showed a significant lower maximum torque in both groups as compared to the untreated contralateral femura.
Conclusion
Here we show first results of a new two-stage pseudarthrosis animal model, which reflects a very realistic clinical situation of an infection-related non-union model. Based on this model, various therapeutic strategies in the treatment of infectious and non-infectious pseudarthrosis, such as the use of bone substitutes, can be evaluated in further studies.