Abstract
Aim
The demonstration of the in vivo bactericidal efficacy of a new bone cement with rifampicin contained in microcapsules and its intra-articular release profile.
Method
Fifteen New Zealand White rabbits were employed to reproduce periprosthetic infection by intra-articular inoculation of 105 CFU/mL of Staphylococcus aureus ATCC® 29213 using as a target implant a 3D printed stainless steel tibial insert. 7 days after inoculation, the first stage of the two stage exchange was carried out and at this time the animals were divided into two study groups: group C (7 rabbits) that received a spacer with gentamicin and group R (8 rabbits) that received a spacer with gentamicin and rifampicin microcapsules. Response to infection was monitored by clinical (weight and temperature), hematological (leukocyte, lymphocyte and platelet counts) and biochemical (erythrocyte sedimentation rate) analyses at the time of inoculation, at the first stage of exchange, 4 days after first stage and weekly until the fourth week when animals were euthanized. Microbiological counts were performed at the first stage of exchange and at the end of the study.
Results
14/15 animals (93.3%) developed a PJI 1 week after the inoculation. A statistically significant elevation of the leukocyte and platelet count and a decrease in the percentage of lymphocytes (p=0.0001) was found and positive microbiological cultures. Four weeks after the placement of the spacer, no bacterial growth was found in the soft tissue or bone samples of the group with rifampicin microcapsules (group R), being these differences statistically significant with p=0.01 and 0.03 respectively. The rifampicin intra-articular release kinetics showed concentrations above the staphylococcal MIC at all time points.
Conclusions
The bone cement with microencapsulated rifampicin is effective in the in vivo treatment of prosthetic joint infection due to biofilm-forming S. aureus.