Abstract
Aim
Bone and joint infections are frequent in African countries and their prevention and treatment remain a great challenge. This study aimed to determine the bacterial ecology and sensitivity of isolates to locally available antibiotics in orthopedic unit of a tertiary care hospital in Cameroun.
Method
During a 12 months period, all the patients presenting with osteomyelitis or septic arthritis irrespective of the mechanism and the location were enrolled in this study. Intraoperative samples (biopsies) were taken and sent for microbiological analysis, and all strains isolated were tested for antibiotic sensitivity according to conventional methods.
Results
on the 52 bacteriological analysis performed, 48 were positive. The most isolated germs were staphylococcus aureus (41.9 % of isolates), pseudomonas aeruginosa (14.5 %), Escherichia coli (14.5 %) and Klebsiella pneumonia (12.9 %). The antibiotic sensitivity pattern revealed worrying resistance rates for common and affordable antibiotics: ampicillin (94 %), amoxicillin + clavulanic acid (63.9 %), ceftazidim (65.5%), ticarcillin + clavulanate (57.4%), gentamycin (49 %), ciprofloxacin (40 %), cefuroxim (40 %), tobramycin (38.5 %). The strains of Staphylococcus aureus showed resistance to penicillin G (83%), oxacillin (25%), lincomycin (27%) and vancomycin (7%). The overall highest sensitivity rates were observed with amikacin (92 %) and imipenem (90.1%), which for many patients were the only effective locally available antibiotics. The daily cost of treatment with those two antibiotics is close to the guaranteed minimum wage in our country.
Conclusions
The alarming rate of multidrug-resistant bacteria makes the long antibiotic treatment of bone infections unaffordable (in a context of lack of social insurance) for most of our patients. We advocate strong national policies for bacteriological surveillance and antibiotic misuse de-escalation to prevent antibiotic resistance.