Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Spine

EARLY MATRIX CHANGES IN INTERVERTEBRAL DISC DEGENERATION ASSESSED BY FOURIER-TRANSFORM INFRARED SPECTROSCOPY

The Society for Back Pain Research (SBPR) Annual General Meeting 2019, ‘From Bench to Bedside’. Sheffield, England, 5–6 September 2019.



Abstract

Purpose of study and background

Mechanical overloading initiates intervertebral disc degeneration, presumably because cells break down the extracellular matrix (ECM). We used Fourier Transform Infrared Spectroscopy (FTIR) imaging to identify, visualize and quantify the ECM and aimed to identify spectroscopic markers for early disc degeneration.

Methods and Results

In seven goats, one disc was injected with chondroitinase ABC (mild degeneration) and after three months compared to control. Ex vivo, 50 caprine discs received physiological loading (50–150N) or overloading (50–400N) in a loaded disc culture system. To determine whether ECM degeneration is due to cell activity, half of the discs was subjected to freeze-thaw cycles. Spectroscopic images were collected at 1000–1300 cm−1 and analyzed using multivariate curve resolution analysis.

In vivo, less proteoglycan was found in the degenerated group (p<0.05), especially in the nucleus. Collagen content was increased in the nucleus and anterior annulus, and had higher entropy (p<0.01), indicating matrix disorganization. In the ex vivo experiment, the proteoglycan/collagen ratio was decreased (p<0.05) in the vital group and there was an increase in collagen entropy (p<0.05). A significant interaction between loading and vitality was found in the amount of collagen (p<0.05), but not in the entropy.

Conclusion

Three weeks of mild overloading causes measurable changes in the extracellular matrix. Increased collagen entropy indicates that remodeling of collagen is a first step into disc degeneration. We could not confirm, however, that increase in entropy was due to cell activity. FTIR imaging allows more detailed investigation of early disc degeneration than traditional measures.

There are no conflicts of interest

Partially funded by Dutch Arthritis Funds, personal grant KSE


Email: