Abstract
Purpose of study and background
Degeneration of the intervertebral disc is a strong contributor of low back pain. Studies have shown that both, mechanical unloading and overloading, lead to disc degeneration. This is intuitively clear if one considers that an intervertebral disc essentially is a poro-elastic material embedded with cells, which depend on fluid flow for the transport of nutrients and waste products. As such, mechanical loading is also required for regeneration. It is unclear, however, how much loading is beneficial or detrimental for the healthy or degenerated disc.
Methods and Results
We developed a loaded disc culture system for the long-term study of disc physiology. This way we could control both the mechanical and biochemical conditions. If no loading was applied, about half of the cells died within a week. Cells died under a low dynamic loading regime after three weeks. A diurnal loading regime rescued cell viability, gene expression profile and mechanical behavior of the discs. Both static and dynamic overloading induced damage to the discs and led to catabolic and inflammatory gene expressions.
Conclusion
Intervertebral discs need a certain dosage of mechanical loading to remain viable. Under overloading, cells deform, change gene expression and become degenerative. The matrix is also remodeled, thereby further decreasing the hydrostatic pressure on the cells and increasing their deformation. This induces a vicious circle of disc degeneration, which needs to be reversed in order to repair the disc. The loaded disc culture system also allows evaluating new therapies for disc degeneration.
There are no conflicts of interest
Funded by ZonMW program “Alternatives for live animal testing”, grant #11400090;
BioMedical Materials Program, grant # P2.01 IDiDas; Dutch Arthritis Funds, personal grant KSE