Abstract
Aims
Significant correction of an adolescent idiopathic scoliosis in the coronal plane through a posterior approach is associated with hypokyphosis. Factors such as the magnitude of the preoperative coronal curve, the use of hooks, number of levels fused, preoperative kyphosis, screw density, and rod type have all been implicated. Maintaining the normal thoracic kyphosis is important as hypokyphosis is associated with proximal junctional failure (PJF) and early onset degeneration of the spine. The aim of this study was to determine if coronal correction per se was the most relevant factor in generating hypokyphosis.
Methods
A total of 95 patients (87% female) with a median age of 14 years were included in our study. Pre- and postoperative radiographs were measured and the operative data including upper instrumented vertebra (UIV), lower instrumented vertebra (LIV), metal density, and thoracic flexibility noted. Further analysis of the post-surgical coronal outcome (group 1 < 60% correction and group 2 ≥ 60%) were studied for their association with the postoperative kyphosis in the sagittal plane using univariate and multivariate logistic regression.
Results
Of the 95 patients, 71.6% (68) had a thoracic correction of > 60%. Most (97.8%) had metal density < 80%, while thoracic flexibility > 50% was found in 30.5% (29). Preoperative hypokyphosis (< 20°) was present in 25.3%. A postoperative thoracic hypokyphosis was four times more likely to occur in patients with thoracic correction ≥ 60% (odds ratio (OR) 4.08; p = 0.005), after adjusting for confounding variables. This association was not affected by metal density, thoracic flexibility, LIV, UIV, age, or sex.
Conclusion
Our study supports the ‘essential lordosis’ hypothesis of Roaf and Dickson, i.e. with a greater ability to translate the apical vertebra towards the midline, there is a commensurate lengthening of the anterior column due to the vertebral wedging.
Cite this article: Bone Joint J 2020;102-B(4):513–518.