header advert
You currently have no access to view or download this content. Please log in with your institutional or personal account if you should have access to through either of these
The Bone & Joint Journal Logo

Receive monthly Table of Contents alerts from The Bone & Joint Journal

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Get Access locked padlock

Instructional Review

Can next generation sequencing play a role in detecting pathogens in synovial fluid?

Download PDF



The diagnosis of periprosthetic joint infection can be difficult due to the high rate of culture-negative infections. The aim of this study was to assess the use of next-generation sequencing for detecting organisms in synovial fluid.

Materials and Methods

In this prospective, single-blinded study, 86 anonymized samples of synovial fluid were obtained from patients undergoing aspiration of the hip or knee as part of the investigation of a periprosthetic infection. A panel of synovial fluid tests, including levels of C-reactive protein, human neutrophil elastase, total neutrophil count, alpha-defensin, and culture were performed prior to next-generation sequencing.


Of these 86 samples, 30 were alpha-defensin-positive and culture-positive (Group I), 24 were alpha-defensin-positive and culture-negative (Group II) and 32 were alpha-defensin-negative and culture-negative (Group III). Next-generation sequencing was concordant with 25 results for Group I. In four of these, it detected antibiotic resistant bacteria whereas culture did not. In another four samples with relatively low levels of inflammatory biomarkers, culture was positive but next-generation sequencing was negative.

A total of ten samples had a positive next-generation sequencing result and a negative culture. In five of these, alpha-defensin was positive and the levels of inflammatory markers were high. In the other five, alpha-defensin was negative and the levels of inflammatory markers were low. While next-generation sequencing detected several organisms in each sample, in most samples with a higher probability of infection, there was a predominant organism present, while in those presumed not to be infected, many organisms were identified with no predominant organism.


Pathogens causing periprosthetic infection in both culture-positive and culture-negative samples of synovial fluid could be identified by next-generation sequencing.

Cite this article: Bone Joint J 2018;100-B:127–33.

Correspondence should be sent to J. Parvizi; email:

For access options please click here