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Introduction
The pathogenesis of rotator cuff disease (RCD) is complex and not fully understood. This 
systematic review set out to summarise the histological and molecular changes that occur 
throughout the spectrum of RCD.

Methods
We conducted a systematic review of the scientific literature with specific inclusion and 
exclusion criteria.

Results
A total of 101 studies met the inclusion criteria: 92 studies used human subjects exclusively, 
seven used animal overuse models, and the remaining two studies involved both humans 
and an animal overuse model. A total of 58 studies analysed supraspinatus tendon 
exclusively, 16 analysed subacromial bursal tissue exclusively, while the other studies 
analysed other tissue or varying combinations of tissue types including joint fluid and 
muscle. The molecular biomarkers that were altered in RCD included matrix substances, 
growth factors, enzymes and other proteins including certain neuropeptides.

Conclusions
The pathogenesis of RCD is being slowly unravelled as a result of the significant recent 
advances in molecular medicine. Future research aimed at further unlocking these key 
molecular processes will be pivotal in developing new surgical interventions both in terms 
of the diagnosis and treatment of RCD.

Article focus
 To determine the key histological and

molecular changes in rotator cuff disease
(RCD) by systematically reviewing the
scientific literature

Key messages
 The pathogenesis of RCD is complex and

multifactorial
 The progressive histological changes in

RCD are of a characteristic pattern
 The levels of several molecular biomark-

ers are altered in RCD

Strengths and limitations
 The studies of RCD are heterogeneous in

several ways, including subject type and
disease characteristics

 The supraspinatus tendon is highly vari-
able morphologically in terms of loading

patterns, and this has a consequent effect
on the local molecular biomarker levels

 Understanding the changes in molecular
biomarkers is paramount in guiding the
future research and treatment of RCD

Introduction
Rotator cuff disease (RCD) involves a spec-
trum of shoulder conditions from early
tendinopathy to full thickness tears. The nat-
ural history and molecular pathophysiology
of cuff disease is far from being fully under-
stood. Historically the idea of mechanisms
both intrinsic and extrinsic to the tendon
have been researched and argued. Codman
and Akerson1 initially proposed in 1934 that
degeneration within the tendon was the
‘intrinsic’ primary cause of cuff tears. The
‘extrinsic’ theory relating to tendon damage
secondary to attrition by surrounding
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structures was popularised by Neer in 1972,2 and the
term ‘impingement’ was coined. The pathogenesis of
cuff disease is multifactorial and likely results from a com-
bination of intrinsic, extrinsic and environmental factors.3

The rotator cuff insertion onto the humeral tuberosities
is broad, continuous, multilayered and interwoven.4 The
supraspinatus and infraspinatus tendons fuse 1.5 cm
proximal to their insertions. Tears in the supraspinatus
tendon (SST) are the most common and they are most
frequently found near to the tendon’s bony insertion; as
SST tears become larger they are more likely to involve
infraspinatus due to their common insertion. In this con-
text the anatomy of the SST’s insertion is of key relevance
in terms of its extracellular matrix composition and has
been categorised into four transition zones.5 The first
zone is proper tendon, made up of largely type I collagen
and small amounts of decorin. The second zone is fibro-
cartilage and consists of largely types II and III collagen,
with small amounts of types I, IX and X collagen. The
third zone is mineralised fibrocartilage and consists of
type II collagen, with significant amounts of type X colla-
gen and aggrecan. The fourth zone is bone and is largely
type I collagen with a high mineral content. This effective
bone-tendon attachment is achieved through a func-
tional grading in mineral content and collagen fibre ori-
entation. The SST enthesis is a highly specialised
inhomogeneous structure that is subjected to both tensile
and compressive forces; this appears important in both
the development and propagation of cuff tears.

Tendon homeostasis and its failure in degenerative dis-
ease is a complex process that involves the interplay
between a variety of cells, matrix components, enzymes,
cytokines, growth factors and proteins. The roles of the
different anatomical structures involved (the SST itself,
the subacromial bursa (SAB) and the glenohumeral joint
capsule (GHC)) are yet to be fully determined. The pur-
pose of this systematic review was to summarise the cel-
lular and molecular changes in rotator cuff disease and
explain their possible significance in terms of the disease
pathogenesis and future research.

Materials and Methods
This systematic review used the PRISMA-Statement
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) as a guideline in the development of the
study protocol and the report of the current study.6 The
inclusion criteria and methods of analysis were specified
in advance and documented in a protocol.
Information sources and search strategy. Studies were
identified by searching the PubMed and Cochrane elec-
tronic databases. The search was undertaken in April
2012. The following search terms were used in PubMed:
shoulder nerve growth factor, shoulder NGF, shoulder
neuronal regulation, shoulder neuropeptide Y, shoulder
NPY, shoulder noradrenaline, shoulder VIP, shoulder
Acetycholine, shoulder substance P, shoulder TGF,

shoulder CGRP, shoulder IB4, shoulder galanin, shoulder
recept shoulder opio*, shoulder histological, shoulder
molecul*, shoulder somatostatin, shoulder encephalin,
shoulder endorphin, shoulder neurokinin, shoulder hista-
mine, shoulder prostagland*, shoulder NMDA, shoulder
AMPA, shoulder glutam*, shoulder collagen, shoulder
matrix, shoulder GAG and Glycosamino*, shoulder
proteoglycan, shoulder apoptosis, shoulder cytokines,
shoulder chemokines, shoulder growth factor*, shoulder
VEGF, shoulder Interleuk*, shoulder TIMP, shoulder metal-
loprot*, shoulder MMP, shoulder ADAMT, shoulder TNF,
shoulder tendinopathy*, shoulder degenerative disease.

All searches were repeated with the word ‘shoulder’
being substituted by ‘rotator cuff’. Additional studies
were located by searching reference lists of short listed
articles. Hand searches were undertaken on the British
and American editions of the Journal of Bone and Joint
Surgery and the Journal of Shoulder and Elbow Surgery.
Study selection. The citations identified from the searches
were combined and duplicates excluded. All citations for
papers clearly referring to a topic other than the shoulder
were excluded, as were others whose title clearly showed
that the paper was not relevant to the current study. 

Full copies of the remaining papers were obtained and
assessed. Papers concerning the cellular or molecular
changes in degenerative RCD were included. Degenera-
tive RCD included patients with asymptomatic age-
related degeneration (ARD) and symptomatic patients
including the diagnoses of subacromial bursitis, impinge-
ment syndrome (IS), rotator cuff tendinopathy, rotator
cuff tear (RCT), calcifying tendinopathy (CT), long head
of biceps (LHB) tendinopathy and cuff tear arthropathy.

Papers that studied cuff tear models and in vitro studies
were excluded. Papers relating to animal overuse models
and animal impingement models were included. Papers
relating to non-degenerative conditions (such as frozen
shoulder) were excluded unless the results for the
patients with degenerative disease could be separated.
Papers describing solely macroscopic changes, molecular
changes that had no control groups for comparison, or
relating to studies of any tissue or fluid not located in the
region of the shoulder were excluded.
Data collection process. The descriptive histological
results and molecular changes were recorded and have
been summarised in Tables I, II and III; where the molec-
ular change was within different RCD subgroups this was
documented in the results.

Results
Study selection and characteristics. The search strategy
revealed a total of 6145 results (Fig. 1). After removal of
duplicate entries, 3956 unique papers remained. Screen-
ing of the titles and abstracts revealed 190 papers eligible
for inclusion. Further assessment of eligibility, based on
full-text papers, led to the exclusion of 89 papers. This left
101 papers meeting our criteria for inclusion.1,7-106
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A total of 92 studies used exclusively human subjects,
12 of which used cadavers. Seven studies used exclusively
animal overuse models (six rat and one dog model), and
two studies used both human subjects and a model of
animal overuse. The SST alone was analysed in 58 stud-
ies, SAB tissue alone in 16, while the other studies
analysed other tissue or varying combinations of tissue
types. All studies analysed RCD in humans or the effects
of overuse in an animal model. A total of 43 studies were
exclusively histological, 36 studies exclusively molecular,

while the remaining 22 analysed both histological and
molecular changes. All studies on molecular changes had
control groups or performed sub-group analyses based
on specific subject characteristics. The types of control
included those undergoing surgery for other reasons
(instability/trauma), cadaveric specimens and subscapu-
laris samples. A wide variety of techniques were used,
including immunohistochemistry (IHC), reverse tran-
scription polymerase chain reaction (RTPCR) and enzyme
linked immunosorbent assays (ELISAs).

Table I. Histological changes in rotator cuff disease (RCD)

Age-related 
changes (ARD)*

Rotator cuff tendinopathy/
Impingement syndrome (IS)/
Calcific tendinopathy (CT)† Rotator cuff tears (RCTs)‡

Cellular changes Rounding of tenocyte 
nuclei16,71,101

Rounding of tenocytes18,86 Rounding of tenocyte nuclei12,52,65,69,71

Increased cellularity86,94 Plump mesenchymal cells present43

Increased apoptosis12,94 Increased cellular proliferation43,54

Bursal inflammatory cell infiltrate12,55,76 More variable cellularity52,54,65,69,85

No bursal inflammatory cell infiltrate78 Increased cellularity65 (in small RCT vs larger RCT56,82)
Macrophages and multinucleate cells located around areas of 
resorption in CT8,95,96

Increased apoptosis 12,54,58,106 
(α increasing degeneration102)

Chondrocyte type cells8,95,96 Inflammatory cell infiltrate,27,82 no inflammatory cell 
infiltrate102

Bursal inflammatory cell infiltrate12,27

(small > large RCT58) (ftRCT > ptRCT82)
Lymphocyte infiltrate31 
Scanty T/B cells 12,27

Extracellular matrix 
changes

Loss of matrix 
organisation49,71,101 

Loss of matrix organisation8,77,86 Loss of matrix organisation23,30,33,52-54,56,65,71,77,85,102 
(α tear size82)

Fibrocartilagenous 
change1,16,20

Increased mechanoreceptor numbers18 Thinning of collagen fibres53,92

Mucoid/myxoid 
degeneration15,19

Fatty degeneration/infiltration78 Fatty degeneration/infiltration23,30,31,33,43,62,78

Fatty degeneration/
infiltration15

Fibrocartilagenous change around areas of calcification 78,95,98 Focal areas of tissue necrosis23,30,85,92

Increased GAG16 Mucoid/myxoid degeneration 31,33,57,58,60,106

Calcified deposits1,16,20 Calcified deposits30,31,33

Procollagen type I at tear margins32

Amyloid deposition17

Vascularity Increased vascularity20 Increased vascularity94 Focal areas of increased vascularity22,69,85 
(α increasing degeneration 102)

Bursal vascular proliferation55 Increased vascularity45,52,65

Vascular proliferation33,43,54

Unchanged overall vascularity24

Increased bursal vascularity (RCT vs non-RCT36) 
(ftRCT vs ptRCT82)
Increased LHB vascularity in RCT46

Overall change Increased general 
degeneration34,49,71,72,101

Increased general degeneration94 Increased general degeneration 54,57-60,71,106

Chondroid 
metaplasia15,19

Chondroid metaplasia12 Chondroid metaplasia 12,22,23,33,53,56-58,60

Hyaline degeneration71 Increased bursal fibrosis35,55,70 Hyaline degeneration33,52,65,71

Reduced cellularity20 Increased LHB degeneration39 Fibrocartilagenous/granulation tissue at tear 
edges22,23,27,30,43,56,92

Failed tendon healing1 Increased bursal reaction55,78,99,104 Increased bursal fibrosis35

Glenohumeral joint 
degeneration increased 
with RCTs20,34

Degeneration of acromion under surface/CAL77,95 Increased bursal reaction56,78,99,104 
(ftRCT > ptRCT36)

Degeneration of 
acromion under 
surface/CAL62,67,81

Lower number of axons innervated LHBT84 Glenohumeral joint synovial inflammation28

Increased subscapularis tendon degeneration60

Degeneration of acromion under surface/CAL77,95 
(RCT > non-RCT67,90)
Supraspinatus muscle fatty infiltration/degeneration87

* GAG, glycosaminoglycan; CAL, coracoacromial ligament 
† LHB, long head of biceps; LHBT, long head of biceps tendinopathy 
‡ ft, full-thickness; pt, partial thickness



161 B. J. F. DEAN, S. L. FRANKLIN, A. J. CARR

BONE & JOINT RESEARCH

The histological changes in RCD are summarised in
Table I. The significant molecular changes are sum-
marised in Tables II and III.

A reduction in overall collagen content and were seen
in RCD; type II and III collagen content were increased in
multiple studies. Overall glycosaminoglycan (GAG) levels
were increased, while certain proteoglycans levels were
increased (tenascin-C, fibronectin, aggrecan, and bigly-
can) and others reduced (elastin). The general in RCD was
towards a fibrocartilagenous phenotype.

The collagenases matrix metalloproteinase (MMP)-1
and -13 were increased in RCD, while the gelatinases
MMP-2 and MMP-9 were also increased in RCD. MMP-3
levels were altered in seven studies, being increased in
three and decreased in four. Tissue inhibitor of metallo-
proteinases (TIMP)-1, -2 and -3 have all been shown to be
decreased in RCD, while no change in TIMP-4 was dem-
onstrated. Overall there is a clear catabolic trend in RCD.

The changes in terms of cytokines were generally pro-
inflammatory. Several members of the Interleukin family
were increased in RCD (Interleukin-1α, 1β, -6, 11, 15, 18
and IL1-receptor antagonist). Tumour necrosis factor
(TNF)-α, stromal derived factor-1α and the small inducible
cytokines were all increased. The cyclo-oxygenases
(1 and 2), Cathepsin D and nitric oxide synthase were all
increased in RCD. Several growth factors were increased
in RCD including vascular endothelial growth factor

(VEGF), transforming growth factor (TGF)-β, fibroblast
growth factor (FGF), bone morphogenetic protein
(BMP) 2 and BMP 7. Insulin-like growth factor (IGF)-1 was
decreased in RCD.

Several proteins associated with apoptosis are increased
in RCD, including p53, poly(ADP-ribose) polymerase,
caspases 3/8, B-cell lymphoma (BCL)-2, BNIP3, type II
angiotensin receptor, cFLIP and cFLIP receptor. Peroxire-
doxin 5 and the heat shock proteins 27/70 were increased,
while there was no obvious trend in hypoxia-inducible fac-
tor (HIF)-1α levels; these substances may all play a protec-
tive role for cells at times of high stress. In terms of
neuropeptides, increases in substance P and β-endorphin
were seen in RCD. The increase in PGP9.5 and GAP43 is
likely to represent neoinnervation in RCD. 

Discussion
The results of this systematic review must be seen in the
context of the heterogeneity of the studies and of RCD in
general. RCD includes a whole spectrum of changes to
the histological and molecular characteristics of the
tissue. Different studies analysed the tissue of patient
groups that were highly variable in terms of disease stage,
symptomatology and patient demographics. It has been
shown that significant molecular differences are found
depending on if the sampled tendon is from an over-
stressed or stress-shielded region.107 Several studies used

Table II. The changes to extracellular matrix (ECM) components and enzymes in rotator cuff disease (RCD) (also
includes changes to other enzymes and transcription factors) (↑, increased; ↓, decreased)

Matrix components Matrix enzymes

Type I collagen ↑50 MMP-1 ↑14,27,40,45,47,66,99 ↓48

Type II collagen ↑23,67 MMP-2 ↑66 ↑ (ftRCT vs ptRCT89)
Type III collagen ↑,10,39,43,50,72,74 ↑ (RCT vs non-RCT36) MMP-3 ↑39,66 ↓45,47,48,51 ↑ (ftRCT vs ptRCT105

Type X collagen ↑67 MMP-9 ↑14,45,47,82,99 ↑ (ftRCT vs ptRCT89)
Type I collagen α1 ↓9 ↑ (ftRCT vs ptRCT82) MMP-13 ↑37,48,51,66,82

Type I collagen α2 ↓7,38 TIMP-1 ↓51

Type II collagen α1 ↑7,9,38 TIMP-2 ↓51

Type III collagen α1 ↑9,93 ↓7 TIMP3 ↓7,38

Type VI collagen ↑8 α1 ↑9 ADAM10 ↓7

Collagen crosslinking ↑10 Transglutaminase 2 ↓65

Total collagen content ↓10,72,74

Calcium phosphate ↑72

Aggrecan ↑7,9,38,50 Other enzymes
Biglycan ↑9 COX-1 ↑14,99

Decorin ↑9 ↓7,50 COX-2 ↑14,68,82,99

Clusterin ↑7,58 Cathepsin D ↑27

Elastin ↓7 iNOS ↑82,88

Fibronectin ↑(RCT vs non-RCT92) eNOS ↑88

Osteopontin ↑91

Tenascin-C ↑23,35

Versican ↑9 Transcription factors
GAG content ↑9,72 SOX9 ↑7,9

Chondroitin sulphate ↑8,23,72,73 FOXO1A ↑ (massive tears 80) 
Dermatan sulphate ↑8,72,73 FOXO3A ↑ (in tears greater than one-third80)
Hyalauronan ↑73

Hyaluronic acid ↑73

α-skeletal muscle actin and of myosin heavy polypeptide1 ↑21



A SYSTEMATIC REVIEW OF THE HISTOLOGICAL AND MOLECULAR CHANGES IN ROTATOR CUFF DISEASE 162

VOL. 1, No. 7, JULY 2012

animal overuse models which are hypothesised to mimic
the pathophysiology of RCD, however there are likely to
be some significant differences between the molecular
changes found in these models and RCD in humans.
There was also significant diversity between studies in
terms of what was measured. Some studies measured
molecular biomarker levels directly, some measured the
gene expression of molecular biomarkers using mRNA
and some used both of these techniques. All these factors
may account for some of the apparent discrepancies in
the study findings.

The cellular changes that occur as cuff disease pro-
gresses have been well described.12,56 Small tears of the

rotator cuff show features consistent with an attempt to
heal such as increased fibroblast cellularity, blood vessel
proliferation and the presence of a significant inflamma-
tory component. These features of attempting healing
diminish as the size of the tear and the amount of tendon
degeneration increase. The progressive tendon degener-
ation is characterised by thinning of the collagen fibres, a
loss of collagen structure, myxoid degeneration, hyaline
degeneration, chrondroid metaplasia and fatty infiltra-
tion.33 The overall picture is one of pathological
chondroplasia in which tissue which normally exhibits a
tensional morphology is replaced by tissue of a fibro-
cartilage-like phenotype.23

Table III. The changes to cytokines, growth factors, neuronal factors, apoptosis/cell cyle related factors and other factors in
rotator cuff disease (RCD) (↑, increased; ↓, decreased)

Cytokines/growth factors Apoptosis/cell cycle related

IL-1α ↑14,99 HIF-1α ↑11,45,58 ↓59,60,61

IL-1ra ↑26-28 BNIP-3 ↑11

IL-1β ↑13,14,26-28,42,75,82,99 BCL-2 ↑58

IL-2 ↓60,61 Caspase 3 ↑59,60

Il-6 ↑13,14,42,60,82,99 Caspase 8 ↑59-61

IL-11 ↑60,61 Heat shock protein 27 ↑59-61

Il-15 ↑60 Heat shock protein 70 ↑59-61

Il-18 ↑60 poly(ADP-ribose) polymerase ↑60,61

Stromal derived factor-1α (SDF-1α) ↑13,41) type-2 angiotensin II receptor ↓60,61

TNFα ↑14,42,75,82,99 cFLIP ↑59

VEGF ↑45,46,58,68,82 ↑ (associated with motion pain104) cFLIP receptor ↑60

IGF-1 ↓7,38 p-53 induced gene I, cell division cycle 25A, 
Max protein, meiotic recombination 11 homolog A ↑61

TGF-β ↑67,75 Peroxiredoxin 5 ↑100

bFGF ↑67,75 P53 ↑54,61

FGF 18 ↑61 P53 inhibitors ↓54

BMP2 and BMP7 ↑67 NF-κB ↓54

Small inducible cytokines ↑14 Receptor activator of NF-κB ↑60

Macrophage inhibitory factor (MIF) ↑60

Heparin affinity regulatory peptide (HARP) ↑9

Five-lipoxygenase activating protein ↑68

Hepatocyte growth factor ↓61

Neuronal factors Others
Substance P ↑40 (higher in non-perforated RCTs vs perforated25) Ubiquitin proteasome pathway UBE2A and UBE3A ↑ 

(massive tears vs small/controls80)
β-endorphin ↑40 Calpain (CAPN1) and CTSB (lysosomal enzyme) ↑ 

(massive tears vs small/controls80)
Anti-NGF30 ↑60,61 vWF ↑68

PGP9.5, GAP43 ↑103 T-cell receptor variable βchain ↑60

glutamate receptor 5, glutamate receptor metabotropic 6, 
glutamate receptor inotropic 3A, GABA receptor α1 ↑61

Ig heavy chain, T cell receptor α chain ↓60

AMPA1, glutamate receptor interacting protein 1/2 ↓61 GATA binding protein, PAF acetylhydrolase, Attractin, 
IgG-2b chain ↑60,61

Insulin induced gene 1, FGFr1, nuclear receptor 
coactivator 2, G protein coupled receptor 54, Ephrin 
A1, Thyrotroph embryonic factor, Odd Oz/ten-m 
homolog 2, POU domain, TNF 11, TGF-β binding 
protein 3, T cell receptor β chain, cytochrome b-245, 
CD3 γ chain, polyprotein 1-microglobulin, Fc receptor 
IgE, solute carrier family 2, adenosine deaminsae, 
integrin-linked kinase ↑61

Dynein, nuclear receptor subfamily 2 group F member 
1, Homeobox A1, FGF receptor 3, MHC class I-like 
sequence, T-cell receptor β chain, killer cell lectin-like 
receptor, strain T-cell receptor ↓61

T-cell receptor ↓60,61
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The regulation of matrix turnover involves several cell
types and numerous cytokines. The tenocyte is the resi-
dent fibroblast present in tendon and is arguably the most
pivotal cell type; other cells involved include extrinsic fibro-
blasts and inflammatory cells such as the macrophage.
Tenocytes have been shown to produce a number of cyto-
kines in response to increased strain such as Interleukin-1β
(IL-1β), Interleukin-6 (IL-6), VEGF, HIF-1α, TGF-β and prosta-
glandin-E2 (PG-E2).108-111 Our results show that numerous
cytokines and growth factors including IL-1β, IL-6, VEGF,
bFGF, TGF-β, TNF-α, HIF-1α, cyclooxygenase (COX)-1,
COX-2 and nitric oxide synthase (NOS) are all increased in
RCD. VEGF, IGF-1, TGF-β and FGF are all increased during
normal tendon healing112 and their increase in RCD is
demonstrative of tendon attempting to heal. An increased
IL-1β production has been hypothesised to promote cell
survival in a high stress environment.109 Numerous com-
plex interactions occur between these cytokines, the extra-
cellular matrix synthesis, catabolic mediators and
cytoskeleton assembly.113 Pro-inflammatory cytokines
affect extracellular matrix homeostasis, accelerate remod-
elling, amplify biomechanical adaptivity and promote
tenocyte apoptosis. The trend towards a pro-inflammatory
state in RCD is indicative of the imbalance that occurs
between the catabolic and anabolic systems, the cytokines
being key regulatory factors of these. As RCD progresses
and cuff tears become increasingly sizeable there is a clear
increase in apoptosis, as evidenced by increases in several
apoptosis related markers including BNIP-3, BCL-2, the
caspases and the heat shock proteins. The increase in p53
activity in RCD may also be important in promoting
apoptosis.

Tendon is highly mechanically adaptive and a charac-
teristic feature of RCD is the progressive mechanical fail-
ure of tendon to meet the physical demands placed upon

it.112 Total collagen content decreases, while there is a sig-
nificant increase in the proportion of type II and III colla-
gen relative to type I collagen. This change in collagen
makeup goes hand in hand with a transformation of the
matrix from larger organised fibrils to smaller disorgan-
ised fibrils with decreasing mechanical properties. The
mature and hydroxylysine cross-links are significantly
increased which may be a feature of the incomplete
remodelling found in scar tissue.10 The increase in the
glycoproteins tenascin-C and fibronectin is consistent
with a wound healing process occurring in degenerate
tendon. The changes to several different proteoglycans in
RCD are varied but the overall picture appears to be of
fibrocartilagenous change; this is characterised by
increased aggrecan and biglycan, with decreased
decorin. Therefore overall the matrix changes are consis-
tent with the degenerate tendon attempting to heal, with
a progressively mechanically weak scar tissue being laid
down as part of this failing remodelling process. 

Higher levels of matrix remodelling and turnover have
been linked with RCD114 and the tissue-degrading
enzymes of the metalloproteinase family are important in
this process. The family includes the MMPs, their close rel-
atives ‘a disintegrin and metalloproteinase’ (ADAMs) and
‘a disintegrin and metalloproteinase with thrombo-
spondin motifs’ (ADAMTS). The MMP family consists of
24 known MMPs including the collagenases (MMP1, -8
and -13), the gelatinases (MMP-2 and -9), membrane-
type MMPs (MT-MMPs), the stromelysins (MMP-3 and
-10 and the matrilysins (MMP-7 and -26).115 The collagen-
ases, as well as MMP-2 and -14, have important collagen-
olytic activity. The ADAMTS are divided into four groups,
of which ADAMTS -1,-4,-5,-8,-9,-15,-20 are the aggre-
canases and ADAMTS -2,-3,-14 are the procollagen N-
proteinases. The TIMPs are endogenous inhibitors of the
metalloproteinases and there are four in humans; they
reversibly inhibit all MMPs by a 1:1 interaction with the
zinc binding site. The MMPs do not solely degrade tissue;
they may have anti-inflammatory actions by processing
certain cytokines and chemokines.114

The increased collagen turnover in RCD is consistent
with the increase in two collagenases (MMP-1 and -13) and
two gelatinases (MMP-2 and -9). MMP-3 is thought to be
important in the regulation of matrix turnover and is
reduced in the degenerate SST; this is consistent with ten-
dinopathy resulting from a failure in tendon repair or
matrix maintenance. The decreases in TIMP-1,-2, and -3 in
RCD are also consistent with this catabolic picture of
increased matrix degradation and failing remodelling. The
roles of the ADAMs and ADAMTS have yet to be deter-
mined in RCD. Older tendon is more susceptible to
mechanically induced failure involving MMP activity116

and this may be related to age-related change in
tenocytes.117 The role of tendon stem cells (TSCs) remains
to be determined but their responses to differing mechan-
ical stimuli hint towards an important role.118-120 TSCs have

Records identified through 
database searching (n = 6145)

Records after duplicates removed 
(n = 3956)

Records screened
(n = 3956)

Full-text articles
assessed for eligibility

(n = 190)

Studies included
(n = 101)

Records excluded
(n = 3766)

Included

Identification

Screening

Eligibility

Fig. 1

Flow chart of systematic review protocol.
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been shown to proliferate and produce collagen in
response to exercise, while they have been shown to differ-
entiate into non-tenocytes if excessively mechanically
loaded. A recent report suggested that an extracellular
matrix rich niche, organised partly by biglycan and fibro-
modulin, controls the self-renewal and differentiation of
TSCs.121 The self-renewal capacity and differentiation
capability of TSCs reduces with increasing age122,123 and
this is likely to be important in explaining the age-related
nature of RCD.

This review has summarised just how much progress
has been made in recent years, particularly in the advent
of modern molecular medical techniques. Intrinsic,
extrinsic and environmental factors all have an important
role to play in the disordered tendon homeostasis of RCD
which can lead to progressive mechanical failure. Among
the key questions that remain to be answered include
why some patients’ tendons degenerate, while others do
not, and why some patients experience pain, while others
with the same amount of macroscopic tendon degenera-
tion do not. Certainly there is still a great deal to be
understood as regards the pathogenesis of RCD and
undoubtedly, unlocking these secrets could pave the way
for some very exciting new treatments in the future.

Supplementary material
A table giving details of each of the 101 studies
included in this review is available with this article

on our website www.bjr.boneandjoint.org.uk
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