Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.Aims
Methods
Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.Aims
Methods
Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.Aims
Methods
Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article:
To present our experience of using a combination of intra-articular
osteotomy and external fixation to treat different deformities of
the knee. A total of six patients with a mean age of 26.5 years (15 to
50) with an abnormal hemi-joint line convergence angle (HJLCA) and
mechanical axis deviation (MAD) were included. Elevation of a tibial
hemiplateau or femoral condylar advancement was performed and limb
lengthening with correction of residual deformity using a circular
or monolateral Ilizarov frame.Aims
Patients and Methods
The objective of this study was to evaluate the rotation and
translation of each joint in the hindfoot and compare the load response
in healthy feet with that in stage II posterior tibial tendon dysfunction
(PTTD) flatfoot by analysing the reconstructive three-dimensional
(3D) computed tomography (CT) image data during simulated weight-bearing. CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot
were taken first in a non-weight-bearing condition, followed by
a simulated full-body weight-bearing condition. The images of the
hindfoot bones were reconstructed into 3D models. The ‘twice registration’
method in three planes was used to calculate the position of the
talus relative to the calcaneus in the talocalcaneal joint, the
navicular relative to the talus in talonavicular joint, and the cuboid
relative to the calcaneus in the calcaneocuboid joint.Objective
Methods
Free vascularised fibular grafting has been reported
to be successful for adult patients with osteonecrosis of the femoral
head (ONFH). However, its benefit in teenage patients with post-traumatic
ONFH has not been determined. We evaluated the effectiveness of
free vascularised fibular grafting in the treatment of this condition
in children and adolescents. We retrospectively analysed 28 hips
in 28 patients in whom an osteonecrotic femoral head had been treated
with free vascularised fibular grafting between 2002 and 2008. Their
mean age was 16.3 years (13 to 19). The stage of the disease at
time of surgery, and results of treatment including pre- and post-operative
Harris hip scores, were studied. We defined clinical failure as
conversion to total hip replacement. All patients were followed
up for a mean of four years (2 to 7). The mean Harris hip score
improved from 60.4 (37 to 84) pre-operatively to 94.2 (87 to 100)
at final follow-up. At the latest follow-up we found improved or
unchanged radiographs in all four initially stage II hips and in
23 of 24 stage III or IV hips. Only one hip (stage V) deteriorated.
No patient underwent total hip replacement. Free vascularised fibular grafting is indicated for the treatment
of post-traumatic ONFH in teenage patients.
This study prospectively compared the efficacy of kyphoplasty using a Jack vertebral dilator and balloon kyphoplasty to treat osteoporotic compression fractures between T10 and L5. Between 2004 and 2009, two groups of 55 patients each underwent vertebral dilator kyphoplasty and balloon kyphoplasty, respectively. Pain, function, the Cobb angle, and the anterior and middle height of the vertebral body were assessed before and after operation. Leakage of bone cement was recorded. The post-operative change in the Cobb angle was significantly greater in the dilator kyphoplasty group than in the balloon kyphoplasty group (−9.51° ( These findings suggest that vertebral dilator kyphoplasty can facilitate better correction of kyphotic deformity and may ultimately be a safer procedure in reducing leakage of bone cement.
A foreign-body-type host response can contribute to the induction and release of collagenolytic tissue-destructive enzymes of pathogenetic significance. Our aim was to analyse collagenase-3 in two conditions with putative involvement of foreign-body reactions. Synovial membrane-like tissue samples were obtained from cases of aseptic loosening of a total hip replacement (THR) and osteoarthritis (OA). The reverse transcription polymerase chain reaction (RT-PCR) disclosed that all the samples from patients contained collagenase-3 mRNA compared with only three out of ten control samples. The identity of the RT-PCR amplification product was confirmed by nucleotide sequencing. Immunohistochemical staining showed that collagenase-3 was present in endothelial cells, macrophages and fibroblasts, including those found in the synovial lining. This finding was confirmed by avidin-biotin-peroxidase complex-alkaline phosphatase-anti-alkaline phosphatase double staining and the specificity of the staining by antigen preabsorption using recombinant human collagenase-3. Collagenase-3 was released into the extracellular space and thus found in the synovial fluid in all patient samples as shown by Western blotting. The similar extent of collagenase-3 expression in aseptic loosening and OA compared with the low expression in control synovial membrane suggests involvement of a similar, foreign-body-based pathogenetic component in both. Comparative analysis of collagenase-3 and of foreign particles indicates that paracrine factors rather than phagocytosis We suggest that due to its localisation and substrate specificity, collagenase-3 may play a significant pathogenetic role in accelerating tissue destruction in OA and in aseptic loosening of a THR.