Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.Objectives
Materials and Methods
As many as 25% to 40% of unicompartmental knee
replacement (UKR) revisions are performed for pain, a possible cause
of which is proximal tibial strain. The aim of this study was to
examine the effect of UKR implant design and material on cortical
and cancellous proximal tibial strain in a synthetic bone model.
Composite Sawbone tibiae were implanted with cemented UKR components
of different designs, either all-polyethylene or metal-backed. The tibiae
were subsequently loaded in 500 N increments to 2500 N, unloading
between increments. Cortical surface strain was measured using a
digital image correlation technique. Cancellous damage was measured
using acoustic emission, an engineering technique that detects sonic
waves (‘hits’) produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences
between implants at 1500 N and 2500 N in the proximal 10 mm only
(p <
0.001), with relative strain shielding in metal-backed implants.
Acoustic emission showed significant differences in cancellous bone
damage between implants at all loads (p = 0.001). All-polyethylene implants
displayed 16.6 times the total number of cumulative acoustic emission
hits as controls. All-polyethylene implants also displayed more
hits than controls at all loads (p <
0.001), more than metal-backed
implants at loads ≥ 1500 N (p <
0.001), and greater acoustic
emission activity on unloading than controls (p = 0.01), reflecting
a lack of implant stiffness. All-polyethylene implants were associated
with a significant increase in damage at the microscopic level compared
with metal-backed implants, even at low loads. All-polyethylene
implants should be used with caution in patients who are likely
to impose large loads across their knee joint. Cite this article:
The lateral compartment is predominantly affected
in approximately 10% of patients with osteoarthritis of the knee. The
anatomy, kinematics and loading during movement differ considerably
between medial and lateral compartments of the knee. This in the
main explains the relative protection of the lateral compartment
compared with the medial compartment in the development of osteoarthritis.
The aetiology of lateral compartment osteoarthritis can be idiopathic,
usually affecting the femur, or secondary to trauma commonly affecting
the tibia. Surgical management of lateral compartment osteoarthritis
can include osteotomy, unicompartmental knee replacement and total
knee replacement. This review discusses the biomechanics, pathogenesis
and development of lateral compartment osteoarthritis and its management. Cite this article:
This prospective randomised controlled double-blind
trial compared two types of PFC Sigma total knee replacement (TKR),
differing in three design features aimed at improving flexion. The
outcome of a standard fixed-bearing posterior cruciate ligament-preserving
design (FB-S) was compared with that of a high-flexion rotating-platform
posterior-stabilised design (RP-F) at one year after TKR. The study group of 77 patients with osteoarthritis of the knee
comprised 37 men and 40 women, with a mean age of 69 years (44.9
to 84.9). The patients were randomly allocated either to the FB-S
or the RP-F group and assessed pre-operatively and at one year post-operatively.
The mean post-operative non-weight-bearing flexion was 107° (95%
confidence interval (CI) 104° to 110°)) for the FB-S group and 113°
(95% CI 109° to 117°) for the RP-F group, and this difference was
statistically significant (p = 0.032). However, weight-bearing range
of movement during both level walking and ascending a slope as measured
during flexible electrogoniometry was a mean of 4° lower in the RP-F
group than in the FB-S group, with 58° (95% CI 56° to 60°) Although the RP-F group achieved higher non-weight-bearing knee
flexion, patients in this group did not use this during activities
of daily living and reported more pain one year after surgery
To evaluate the neck strength of school-aged rugby players, and
to define the relationship with proxy physical measures with a view
to predicting neck strength. Cross-sectional cohort study involving 382 rugby playing schoolchildren
at three Scottish schools (all male, aged between 12 and 18 years).
Outcome measures included maximal isometric neck extension, weight,
height, grip strength, cervical range of movement and neck circumference.Objectives
Methods
We have reviewed the literature to establish the role of lateral retinacular release in the management of disorders of the extensor apparatus of the knee. The scientific evidence for intervention is explored and reports on outcome are discussed.
Modifications in the design of knee replacements have been proposed in order to maximise flexion. We performed a prospective double-blind randomised controlled trial to compare the functional outcome, including maximum knee flexion, in patients receiving either a standard or a high flexion version of the NexGen legacy posterior stabilised total knee replacement. A total of 56 patients, half of whom received each design, were assessed pre-operatively and at one year after operation using knee scores and analysis of range of movement using electrogoniometry. For both implant designs there was a significant improvement in the function component of the knee scores (p <
0.001) and the maximum range of flexion when walking on the level, ascending and descending a slope or stairs (all p <
0.001), squatting (p = 0.020) and stepping into a bath (p = 0.024). There was no significant difference in outcome, including the maximum knee flexion, between patients receiving the standard and high flexion designs of this implant.
Injury to the common peroneal nerve was present in 14 of 55 patients (25%) with dislocation of the knee. All underwent ligament reconstruction. The most common presenting direction of the dislocation was anterior or anteromedial with associated disruption of both cruciate ligaments and the posterolateral structures of the knee. Palsy of the common peroneal nerve was present in 14 of 34 (41%) of these patients. Complete rupture of the nerve was seen in four patients and a lesion in continuity in ten. Three patients with lesions in continuity, but with less than 7 cm of the nerve involved, had complete recovery within six to 18 months. In the remaining seven with more extensive lesions, two regained no motor function, and one had only MRC grade-2 function. Four patients regained some weak dorsiflexion or eversion (MRC grade 3 or 4). Some sensory recovery occurred in all seven of these patients, but was incomplete. In summary, complete recovery occurred in three (21%) and partial recovery of useful motor function in four (29%). In the other seven (50%) no useful motor or sensory function returned.
We treated 21 patients with 22 dislocations of the knee by repair or reconstruction of all injured ligaments. Eight knees were treated in the acute phase (less than two weeks after injury); the remainder were treated more than six months after injury (6 to 72). Reconstructions were carried out with a combination of autograft and allograft tendons and by direct ligament repair where possible. At a mean follow-up of 32 months (11 to 77) the mean Lysholm score was 87 (81 to 91) in the acute group and 75 (53 to 100) in the delayed group. The mean Tegner activity rating was 5 in the acute group and 4.4 in the delayed group. The International Knee Documentation Committee assessment revealed no differences between the two groups. Instrumented testing of knee stability indicated better results for anterior cruciate ligament reconstructions which had been undertaken in the acute phase, but no difference in the outcome of posterior cruciate ligament reconstructions. There was no difference in the loss of knee movement between the two groups. Although the differences were small, the outcome in terms of overall knee function, activity levels and anterior tibial translation were better in those knees which had been reconstructed within two weeks of injury.
We report a prospective study of 49 patients who had arthroscopic subacromial decompression for chronic rotator-cuff impingement. All patients were assessed preoperatively and at 3, 6 and 12 months using the modified UCLA shoulder score. The dominant arm was affected in 35 patients, but only 13 recognised overuse as a cause of their shoulder pain. Before operation, the UCLA shoulder score was poor or fair in all patients. After three months only 28% of patients had satisfactory relief of symptoms but at one year 85% of patients examined had a good or excellent result. Patients with calcific tendonitis recovered more quickly: 93% reported a good result at six months. We conclude that arthroscopic subacromial decompression is an effective form of treatment, but that patients should be warned that recovery from surgery may be prolonged.