We describe the results of a prospective case series of patients with spondylolysis, evaluating a technique of direct stabilisation of the pars interarticularis with a construct that consists of a pair of pedicle screws connected by a U-shaped modular link passing beneath the spinous process. Tightening the link to the screws compresses bone graft in the defect in the pars, providing rigid intrasegmental fixation. We have carried out this procedure on 20 patients aged between nine and 21 years with a defect of the pars at L5, confirmed on CT. The mean age of the patients was 13.9 years (9 to 21). They had a grade I or less spondylolisthesis and no evidence of intervertebral degeneration on MRI. The mean follow-up was four years (2.3 to 7.3). The patients were assessed by the Oswestry Disability Index (ODI) and a visual analogue scale (VAS). At the latest follow-up, 18 patients had an excellent clinical outcome, with a significant (p <
0.001) improvement in their ODI and VAS scores. The mean ODI score at final follow-up was 8%. Assessment of the defect by CT showed a rate of union of 80%. There were no complications involving the internal fixation. The strength of the construct removes the need for post-operative immobilisation.
We studied the various drill bits available for engineering purposes, and compared them with standard orthopaedic drill bits, using continuous temperature recording at 0.5 mm, 1.0 mm and 1.5 mm from the edge of a 2.5 mm hole as it was drilled in fresh cadaver human tibia. We found that some commercially available drill bits performed better than their orthopaedic equivalents, producing significantly less thermal injury to the surrounding bone and halving the force required for cortical penetration. Our work suggests that the optimal bit for orthopaedic purposes should have a split point and a quick helix. Theoretical knowledge of cutting technology predicts that the addition of a parabolic flute will further reduce thermal damage. Further work is being done on other drill sizes used in orthopaedic practice and on new custom-designed bits.