Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 10 | Pages 1383 - 1387
1 Oct 2013
Lanting BA Ferreira LM Johnson JA Athwal GS King GJW

We measured the tension in the interosseous membrane in six cadaveric forearms using an in vitro forearm testing system with the native radial head, after excision of the radial head and after metallic radial head replacement. The tension almost doubled after excision of the radial head during simulated rotation of the forearm (p = 0.007). There was no significant difference in tension in the interosseous membrane between the native and radial head replacement states (p = 0.09). Maximal tension occurred in neutral rotation with both the native and the replaced radial head, but in pronation if the radial head was excised. Under an increasing axial load and with the forearm in a fixed position, the rate of increase in tension in the interosseous membrane was greater when the radial head was excised than for the native radial head or replacement states (p = 0.02). As there was no difference in tension between the native and radial head replacement states, a radial head replacement should provide a normal healing environment for the interosseous membrane after injury or following its reconstruction. Load sharing between the radius and ulna becomes normal after radial head Replacement. As excision of the radial head significantly increased the tension in the interosseous membrane it may potentially lead to its attritional failure over time.

Cite this article: Bone Joint J 2013;95-B:1383–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1256 - 1259
1 Sep 2008
Kedgley AE DeLude JA Drosdowech DS Johnson JA Bicknell RT

This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the glenohumeral joint during passive abduction after hemiarthroplasty of the shoulder for the treatment of fractures. We used seven pairs of fresh-frozen cadaver shoulders to create simulated four-part fractures of the proximal humerus, which were then reconstructed with hemiarthroplasty and reattachment of the tuberosities. The specimens were randomised, so that one from each pair was repaired using the computer-assisted technique, whereas a traditional hemiarthroplasty without navigation was performed in the contralateral shoulder. Kinematic data were obtained using an electromagnetic tracking device.

The traditional technique resulted in posterior and inferior translation of the humeral head. No statistical differences were observed before or after computer-assisted surgery.

Although it requires further improvement, the computer-assisted approach appears to allow glenohumeral kinematics to more closely replicate those of the native joint, potentially improving the function of the shoulder and extending the longevity of the prosthesis.