To evaluate the applicability of MRI for the quantitative assessment
of anterior talofibular ligaments (ATFLs) in symptomatic chronic
ankle instability (CAI). Between 1997 and 2010, 39 patients with symptomatic CAI underwent
surgical treatment (22 male, 17 female, mean age 25.4 years (15
to 40)). In all patients, the maximum diameters of the ATFLs were
measured on pre-operative T2-weighted MR images in planes parallel
to the path of the ATFL. They were classified into three groups based
on a previously published method with modifications: ‘normal’, diameter
= 1.0 - 3.2 mm; ‘thickened’, diameter >
3.2 mm; ‘thin or absent’,
diameter <
1.0 mm. Stress radiography was performed with the
maximum manual force in inversion under general anaesthesia immediately
prior to surgery. In surgery, ATFLs were macroscopically divided
into two categories: ‘thickened’, an obvious thickened ligament
and ‘thin or absent’. The imaging results were compared with the
macroscopic results that are considered to be of a gold standard.Objectives
Methods
We used three-dimensional movement analysis by computer modelling of knee flexion from 0° to 50° in 14 knees in 12 patients with recurrent patellar dislocation and in 15 knees in ten normal control subjects to compare the The patients had greater values of spin from 20° to 50°, while there were no statistically significant differences in flexion and tilt. The patients also had greater percentage patellar shift from 0° to 50°, percentage tubercle shift at 0° and 10° and patellar inclination from 0° to 50° with a smaller oval-shaped contact area from 20° to 50° moving downwards on the lateral facet. Patellar movement analysis using a three-dimensional computer model is useful to clearly demonstrate differences between patients with recurrent dislocation of the patella and normal control subjects.
We investigated the three-dimensional morphological differences of the articular surface of the femoral trochlea in patients with recurrent dislocation of the patella and a normal control group using three-dimensional computer models. There were 12 patients (12 knees) and ten control subjects (ten knees). Three-dimensional computer models of the femur, including the articular cartilage, were created. Evaluation was performed on the shape of the articular surface, focused on its convexity, and the proximal and mediolateral distribution of the articular cartilage of the femoral trochlea. The extent of any convexity, and the proximal distribution of the articular cartilage, expressed as the height, were shown by the angles about the transepicondylar axis. The mediolateral distribution of the articular cartilage was assessed by the location of the medial and lateral borders of the articular cartilage. The mean extent of convexity was 24.9° Our findings therefore quantitatively demonstrated differences in the shape and distribution of the articular cartilage on the femoral trochlea between patients with dislocation of the patella and normal subjects.
We have described a method of anatomical reconstruction of the lateral ligaments of the ankles with instability using allogeneic fascia lata dried with solvents and sterilised with gamma irradiation. Twenty ankles of 20 patients were assessed objectively and subjectively after a mean follow-up of 4.2 years (3.1 to 10). The result was excellent in 12 (60%), good in seven (35%) and fair in one (5%); none had a poor result. Stress radiography showed that the angle of talar tilt improved from 12.3 ± 4.2° (mean ±
We examined solvent-dried, gamma-irradiated (SD-R) allografts and fresh-frozen (FF) allografts mechanically and morphologically. Before transplantation, FF grafts were more than six times stronger than SD-R grafts. After four weeks, the tensile strength was about the same in both groups. At 24 weeks only collagen fibrils of small diameter were observed in the SD-R grafts while in FF grafts fibrils of small and intermediate diameter were seen. Clinically, we suggest that SD-R grafts could be used as a favourable alternative to FF grafts if care was taken regarding their initial mechanical weakness.
We assessed arthroscopically 22 young athletes with an isolated acute posterior cruciate ligament (PCL) injury. Four had significant damage to the articular cartilage of the medial femorotibial compartment and were advised not to resume sports. Three underwent PCL reconstruction because of a reparable meniscal tear or instability. The other 15 were treated conservatively and resumed sport. At an average follow-up of 51 months, one had developed arthritic symptoms due to newly-developed severe chondral damage to the medial femoral condyle, but none of the other 14 had developed arthritic symptoms and most remained athletically active. Severe chondral damage should be seen at an early arthroscopy. Knees with an isolated injury to the PCL with concomitant articular damage may be successfully managed by conservative treatment.
From 1986 to 1993, we repaired 278 torn menisci in 264 patients using an arthroscopically assisted inside-out technique. A total of 132 meniscal repairs in 122 patients were evaluated by second-look arthroscopy. At review, only nine patients had meniscal symptoms, such as locking, swelling or pain. Ninety-seven menisci (73%) had healed completely at the repair site, but there were new tears in different areas of 21 menisci, some of which had complete healing at the repair site. Incomplete healing, seen in 23 menisci (17%), was frequently near the popliteus tendon, most commonly where there had been an associated anterior-cruciate-ligament injury. Arthroscopically-assisted meniscal repair seems to be a reliable procedure, but some clinically successful cases had incomplete healing at the repair site or a newly-formed tear in the meniscal body or both. These lesions may cause meniscal symptoms to appear at a later date.
Fresh frozen allogeneic tendon was used to reconstruct the lateral ligaments in 17 ankles. Two or more years later, 13 returned for follow-up examination. The mean age at operation was 23 years (range 15 to 39); the interval between injury and operation varied from six months to 20 years. There were no infections and no immunological rejections, and according to Sefton's criteria, nine patients were excellent and four good. No patient complained of instability of the ankle and stress radiography confirmed this improvement. Allograft reconstruction of the lateral ligaments of the ankle is a new method of treatment which restores stability without sacrificing normal tendons.
In order to determine whether an allogeneic tendon could be used to replace an extra-articular ligament, the right medial collateral ligament from 11 adult dogs was replaced with a fresh-frozen allogeneic patellar tendon. At each of 3, 6, 15, 30 and 52 weeks postoperatively, one dog was killed for micro-angiographical and histological studies; at 52 weeks the remaining six dogs were killed for tensile testing. Micro-angiograms showed that the allogeneic tendon was revascularised with infiltration of the mesenchymal cells from the surrounding tissues and both ends of the graft. Histologically, the alignment of the fibroblasts and collagen bundles became more regular over time, without any immunological rejection. A biomechanical study performed at 52 weeks found no significant difference in stiffness or ultimate load between normal and reconstructed ligaments. Fresh-frozen allogeneic tendons are therefore considered useful for extra-articular ligament reconstruction.
We have performed an arthroscopic and histological study of the remodelling process of allogeneic tendons transplanted into the human knee as anterior cruciate ligament substitutes. Arthroscopic observations from six weeks to 55 months after operation showed that the grafts were viable, and that early surface hypervascularity subsided with time; moreover, these appearances remained unchanged from 11 months postoperatively onwards. Histological studies from three to 55 months after operation showed that all the grafts were infiltrated with fibroblasts, and that cellularity in their substance reduced with time, remaining unchanged from 18 months onwards; the collagen bundles were aligned as in a normal ligament from six months onwards. These findings suggest that the grafts reach maturity within the first 18 months and remain unchanged as viable ligaments thereafter.
Among 449 patients with leprosy, 40 had clinical and radiographic evidence of neuroarthropathy in 50 feet. These changes were classified into four types according to the joints first involved by major lesions: ankle (25 feet), midtarsal (15 feet), tarsometatarsal (7 feet) and subtalar (3 feet). The progression of joint destruction was different in each type, but despite the severe destructive changes seen in radiographs, the patients had relatively few complaints. The muscles innervated by the peroneal nerve were severely paralysed in ankle and midtarsal types and it seems that, over a long term, repeated trauma and/or abnormal stress may lead to these types of neuroarthropathy. Neuropathy was less severe in the tarsometatarsal type of joint degeneration; the pathogenesis in this type seemed to be mainly direct trauma to the forefoot.
We have developed an apparatus to measure the anteroposterior stability of the knee to forces of up to 250 N, applied at 20 degrees of flexion. We measured anterior laxity at 200 N, anterior stiffness at 50 N and total laxity at +/- 200 N. A study of cadaveric knees revealed that the soft tissues surrounding the bones had a significant influence on the force-displacement curve, and emphasised that differences between injured and normal pairs of knees are much more important than the absolute values of the parameters. In 61 normal volunteers we found no significant left to right differences in anterior laxity at 200 N and anterior stiffness at 50 N. In 92 patients with unilateral anterior cruciate deficiency there were significant differences (p less than 0.0005) in anterior laxity, anterior stiffness and total laxity, the injured-normal differences averaging 6.7 mm, 1.3 N/mm, and 8.1 mm respectively.