We performed a biomechanical study to compare the augmentation of isolated fractured
We obtained intervertebral discs with cartilage endplates and underlying cancellous bone at operation from patients with degenerative disc disease and then used immunohistochemical techniques to localise the nerves and nerve endings in the specimens. We used antibodies for the ubiquitous neuronal protein gene product 9.5 (PGP 9.5). Immunoreactivity to neuropeptide Y was used to identify autonomic nerves and calcitonin gene-related peptide (CGRP) and substance P to identify sensory nerves. Blood vessels were identified by immunoreactivity with platelet-endothelial cell-adhesion molecule (CD31; PECAM). In a control group with no known history of chronic back pain, nerve fibres immunoreactive to PGP 9.5 and neuropeptide Y were most closely related to blood vessels, with occasional substance P and CGRP immunoreactivity. In patients with severe back pain and markedly reduced disc height, proliferation of blood vessels and accompanying nerve fibres was observed in the endplate region and underlying
Vertebroplasty, which is the percutaneous injection of bone cement into
Fusion is the main goal in the surgical management of the injured and unstable spine. A wide variety of implants is available to enhance this. Our study was performed to evaluate the stabilising characteristics of several anterior, posterior and combined systems of fixation. Six thoracolumbar (T11 to L2) spines from 13-week-old calves were first tested intact. Then the
We performed a biomechanical study on human cadaver spines to determine the effect of three different interbody cage designs, with and without posterior instrumentation, on the three-dimensional flexibility of the spine. Six lumbar functional spinal units for each cage type were subjected to multidirectional flexibility testing in four different configurations: intact, with interbody cages from a posterior approach, with additional posterior instrumentation, and with cross-bracing. The tests involved the application of flexion and extension, bilateral axial rotation and bilateral lateral bending pure moments. The relative movements between the vertebrae were recorded by an optoelectronic camera system. We found no significant difference in the stabilising potential of the three cage designs. The cages used alone significantly decreased the intervertebral movement in flexion and lateral bending, but no stabilisation was achieved in either extension or axial rotation. For all types of cage, the greatest stabilisation in flexion and extension and lateral bending was achieved by the addition of posterior transpedicular instrumentation. The addition of cross-bracing to the posterior instrumentation had a stabilising effect on axial rotation. The bone density of the adjacent
Osteoporosis has become an increasing concern for older people as it may potentially lead to osteoporotic fractures. This study is designed to assess the efficacy and safety of ten therapies for post-menopausal women using network meta-analysis. We conducted a systematic search in several databases, including PubMed and Embase. A random-effects model was employed and results were assessed by the odds ratio (OR) and corresponding 95% confidence intervals (CI). Furthermore, with respect to each outcome, each intervention was ranked according to the surface under the cumulative ranking curve (SUCRA) value.Objectives
Methods
The treatment of osteoporotic fractures is a major challenge, and the enhancement of healing is critical as a major goal in modern fracture management. Most osteoporotic fractures occur at the metaphyseal bone region but few models exist and the healing is still poorly understood. A systematic review was conducted to identify and analyse the appropriateness of current osteoporotic metaphyseal fracture animal models. A literature search was performed on the Pubmed, Embase, and Web of Science databases, and relevant articles were selected. A total of 19 studies were included. Information on the animal, induction of osteoporosis, fracture technique, site and fixation, healing results, and utility of the model were extracted.Objectives
Materials and Methods
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.
In a study on ten fresh human cadavers we examined the change in the height of the intervertebral disc space, the angle of lordosis and the geometry of the facet joints after insertion of intervertebral total disc replacements. SB III Charité prostheses were inserted at L3-4, L4-5, and L5-S1. The changes studied were measured using computer navigation sofware applied to CT scans before and after instrumentation. After disc replacement the mean lumbar disc height was doubled (p <
0.001). The mean angle of lordosis and the facet joint space increased by a statistically significant extent (p <
0.005 and p = 0.006, respectively). By contrast, the mean facet joint overlap was significantly reduced (p <
0.001). Our study indicates that the increase in the intervertebral disc height after disc replacement changes the geometry at the facet joints. This may have clinical relevance.
The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.
To clarify the pathomechanisms of discogenic low back pain, the sympathetic afferent discharge originating from the L5-L6 disc via the L2 root were investigated neurophysiologically in 31 Lewis rats. Sympathetic afferent units were recorded from the L2 root connected to the lumbar sympathetic trunk by rami communicantes. The L5-L6 discs were mechanically probed, stimulated electrically to evoke action potentials and, finally, treated with chemicals to produce an inflammatory reaction. We could not obtain a response from any units in the L5-L6 discs using mechanical stimulation, but with electrical stimulation we identified 42 units consisting mostly of A-delta fibres. In some experiments a response to mechanical probing of the L5-L6 disc was recognised after producing an inflammatory reaction. This study suggests that mechanical stimulation of the lumbar discs may not always produce pain, whereas inflammatory changes may cause the disc to become sensitive to mechanical stimuli, resulting in nociceptive information being transmitted as discogenic low back pain to the spinal cord through the lumbar sympathetic trunk. This may partly explain the variation in human symptoms of degenerate discs.
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases.
Surgery is considered to be the most effective treatment for cartilaginous tumours. In recent years, a trend has emerged for patients with low-grade tumours to be treated less invasively using curettage followed by various forms of adjuvant therapy. We investigated the potential for phenol to be used as an adjuvant. Using a human chondrosarcoma-derived cartilage-producing cell line OUMS-27 as an in vitro model we studied the cytotoxic effect of phenol and ethanol. Since ethanol is the standard substance used to rinse phenol out of a bone cavity, we included an assessment of ethanol to see whether this was an important secondary factor with respect to cell death. The latter was assessed by flow cytometry. A cytotoxic effect was found for concentrations of phenol of 1.5% and of ethanol of 42.5%. These results may provide a clinical rationale for the use of both phenol and ethanol as adjuvant therapy after intralesional curettage in low-grade central chondrosarcoma and justify further investigation.