Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
Bone & Joint 360
Vol. 13, Issue 3 | Pages 48 - 49
3 Jun 2024
Marson BA

The Cochrane Collaboration has produced five new reviews relevant to bone and joint surgery since the publication of the last Cochrane Corner These reviews are relevant to a wide range of musculoskeletal specialists, and include reviews in Morton’s neuroma, scoliosis, vertebral fractures, carpal tunnel syndrome, and lower limb arthroplasty.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 277 - 283
1 May 2017
Yoshikawa M Nakasa T Ishikawa M Adachi N Ochi M

Objectives. Regenerative medicine is an emerging field aimed at the repair and regeneration of various tissues. To this end, cytokines (CKs), growth factors (GFs), and stem/progenitor cells have been applied in this field. However, obtaining and preparing these candidates requires invasive, costly, and time-consuming procedures. We hypothesised that skeletal muscle could be a favorable candidate tissue for the concept of a point-of-care approach. The purpose of this study was to characterize and confirm the biological potential of skeletal muscle supernatant for use in regenerative medicine. Methods. Semitendinosus muscle was used after harvesting tendon from patients who underwent anterior cruciate ligament reconstructions. A total of 500 milligrams of stripped muscle was minced and mixed with 1 mL of saline. The collected supernatant was analysed by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The biological effects of the supernatant on cell proliferation, osteogenesis, and angiogenesis in vitro were evaluated using human mesenchymal stem cells (hMSCs) and human umbilical cord vein endothelial cells (HUVECs). Results. The supernatant contained several GFs/CKs, with especially high levels of basic fibroblast growth factor, and CD34+ cells as the stem/progenitor cell fraction. With regard to biological potential, we confirmed that cell proliferation, osteoinduction, and angiogenesis in hMSCs and HUVECs were enhanced by the supernatant. Conclusions. The current study demonstrates the potential of a new point-of-care strategy for regenerative medicine using skeletal muscle supernatant. This attractive approach and readily-available material could be a promising option for tissue repair/regeneration in the clinical setting. Cite this article: M. Yoshikawa, T. Nakasa, M. Ishikawa, N. Adachi, M. Ochi. Evaluation of autologous skeletal muscle-derived factors for regenerative medicine applications. Bone Joint Res 2017;6:277–283. DOI: 10.1302/2046-3758.65.BJR-2016-0187.R1


Bone & Joint Research
Vol. 6, Issue 8 | Pages 499 - 505
1 Aug 2017
Morrison RJM Tsang B Fishley W Harper I Joseph JC Reed MR

Objectives. We have increased the dose of tranexamic acid (TXA) in our enhanced total joint recovery protocol at our institution from 15 mg/kg to 30 mg/kg (maximum 2.5 g) as a single, intravenous (IV) dose. We report the clinical effect of this dosage change. Methods. We retrospectively compared two cohorts of consecutive patients undergoing total hip arthroplasty (THA) or total knee arthroplasty (TKA) surgery in our unit between 2008 and 2013. One group received IV TXA 15 mg/kg, maximum 1.2 g, and the other 30 mg/kg, maximum 2.5 g as a single pre-operative dose. The primary outcome for this study was the requirement for blood transfusion within 30 days of surgery. Secondary measures included length of hospital stay, critical care requirements, re-admission rate, medical complications and mortality rates. Results. A total of 1914 THA and 2537 TKA procedures were evaluated. In THA, the higher dose of TXA was associated with a significant reduction in transfusion (p = 0.02, risk ratio (RR) 0.74, 95% confidence interval (CI) 0.58 to 0.96) and rate of re-admission (p < 0.001, RR 0.50, 95% CI 0.35 to 0.71). There were reductions in the requirement for critical care (p = 0.06, RR 0.55, 95% CI 0.31 to 1.00), and in the length of stay from 4.7 to 4.3 days (p = 0.02). In TKA, transfusion requirements (p = 0.049, RR 0.64, 95% CI 0.41 to 0.99), re-admission rate (p = 0.001, RR 0.56, 95% CI 0.39 to 0.80) and critical care requirements (p < 0.003, RR 0.34, 95% CI 0.16 to 0.72) were reduced with the higher dose. Mean length of stay reduced from 4.6 days to 3.6 days (p < 0.01). There was no difference in the incidence of deep vein thrombosis, pulmonary embolism, gastrointestinal bleed, myocardial infarction, stroke or death in THA and TKA between cohorts. Conclusion. We suggest that a single pre-operative dose of TXA, 30 mg/kg, maximum 2.5g, results in a lower transfusion requirement compared with a lower dose in patients undergoing elective primary hip and knee arthroplasty. However, these findings should be interpreted in the context of the retrospective non-randomised study design. Cite this article: R. J. M. Morrison, B. Tsang, W. Fishley, I. Harper, J. C. Joseph, M. R. Reed. Dose optimisation of intravenous tranexamic acid for elective hip and knee arthroplasty: The effectiveness of a single pre-operative dose. Bone Joint Res 2017;6:499–505. DOI: 10.1302/2046-3758.68.BJR-2017-0005.R1


Bone & Joint 360
Vol. 12, Issue 5 | Pages 49 - 50
1 Oct 2023
Marson BA

This edition of Cochrane Corner looks at some of the work published by the Cochrane Collaboration, covering pharmacological interventions for the prevention of bleeding in people undergoing definitive fixation or joint replacement for hip, pelvic, and long bone fractures; interventions for reducing red blood cell transfusion in adults undergoing hip fracture surgery: an overview of systematic reviews; and pharmacological treatments for low back pain in adults: an overview of Cochrane Reviews


Bone & Joint 360
Vol. 11, Issue 6 | Pages 49 - 50
1 Dec 2022
Evans JT Whitehouse MR


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 156 - 161
1 Jan 1998
ElMaraghy AW Humeniuk B Anderson GI Schemitsch EH Richards RR

We examined the roles of methylmethacrylate (MMA) monomer and cementing technique in the formation, and haemodynamic outcome, of pulmonary fat emboli. The preparation of the femoral canal and the cementing technique were studied in four groups of adult dogs as follows: control (no preparation); lavage; cement pressurisation; and cement pressurisation after lavage. We measured the intramedullary pressure, pulmonary artery pressure (PAP), pulmonary capillary wedge pressure and bilateral femoral vein levels of triglyceride, cholesterol and MMA monomer at rest and after reaming, lavage, and cementing. Femoral vein triglyceride and cholesterol levels did not vary significantly from resting levels despite significant elevations in intramedullary pressure with reaming, lavage and cementing (p = 0.001). PAP was seen to rise significantly with reaming (p = 0.0038), lavage (p = 0.0031), cementing (p = 0.0024) and cementing after lavage (p = 0.0028) while the pulmonary capillary wedge pressure remained unchanged. MMA monomer was detected in femoral vein samples when cement pressurisation was used. Intramedullary lavage before cementing had no significant effect on the MMA level. Haemodynamic evidence of pulmonary embolism was noted with reaming and intramedullary canal preparation, irrespective of the presence of MMA monomer. We found no relationship between MMA monomer level and intramedullary pressure, PAP or pulmonary capillary wedge pressure. Our findings suggest that the presence of MMA monomer in femoral venous blood has no effect on the formation of fat emboli or their pulmonary haemodynamic outcome during cemented hip arthroplasty


Bone & Joint Research
Vol. 2, Issue 9 | Pages 179 - 185
1 Sep 2013
Warwick DJ Shaikh A Gadola S Stokes M Worsley P Bain D Tucker AT Gadola SD

Objectives. We aimed to examine the characteristics of deep venous flow in the leg in a cast and the effects of a wearable neuromuscular stimulator (geko; FirstKind Ltd) and also to explore the participants’ tolerance of the stimulator. Methods. This is an open-label physiological study on ten healthy volunteers. Duplex ultrasonography of the superficial femoral vein measured normal flow and cross-sectional area in the standing and supine positions (with the lower limb initially horizontal and then elevated). Flow measurements were repeated during activation of the geko stimulator placed over the peroneal nerve. The process was repeated after the application of a below-knee cast. Participants evaluated discomfort using a questionnaire (verbal rating score) and a scoring index (visual analogue scale). Results. The geko device was effective in significantly increasing venous blood flow in the lower limb both with a plaster cast (mean difference 11.5 cm/sec. -1. ; p = 0.001 to 0.13) and without a plaster cast (mean difference 7.7 cm/sec. -1. ; p = 0.001 to 0.75). Posture also had a significant effect on peak venous blood flow when the cast was on and the geko inactive (p = 0.003 to 0.69), although these differences were less pronounced than the effect of the geko (mean difference 3.1 cm/sec. -1. (-6.5 to 10)). The geko device was well tolerated, with participants generally reporting only mild discomfort using the device. Conclusion. The geko device increases venous blood flow in the lower limb, offering a potential mechanical thromboprolylaxis for patients in a cast. Cite this article: Bone Joint Res 2013;2:179–85


Bone & Joint 360
Vol. 11, Issue 5 | Pages 46 - 47
1 Oct 2022
Das A


Bone & Joint 360
Vol. 9, Issue 5 | Pages 49 - 50
1 Oct 2020
Das MA


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 1057 - 1066
1 Nov 1998
Westrich GH Specht LM Sharrock NE Windsor RE Sculco TP Haas SB Trombley JF Peterson M

We performed a crossover study to evaluate the haemodynamic effect of active dorsal to plantar flexion and seven pneumatic compression devices in ten patients who had a total knee arthroplasty. Using the Acuson 128XP/10 duplex ultrasound unit with a 5MHz linear array probe, we assessed the augmentation of peak venous velocity and venous volume above and below the junction of the greater saphenous and common femoral veins in order to study both the deep and superficial venous systems. The pneumatic compression devices evaluated included two foot pumps (A-V Impulse System and PlexiPulse Foot), a foot-calf pump (PlexiPulse Foot-Calf), a calf pump (VenaFlow System) and three calf-thigh pumps (SCD System, Flowtron DVT and Jobst Athrombic Pump). The devices differed in a number of ways, including the length and location of the sleeve and bladder, the frequency and duration of activation, the rate of pressure rise, and the maximum pressure achieved. A randomisation table was used to determine the order of the test conditions for each patient. The enhancement of peak venous velocity occurred primarily in the deep venous system below the level of the saphenofemoral junction. The increases in peak venous velocity were as follows: active dorsal to plantar flexion 175%; foot pumps, A-V Impulse System 29% and PlexiPulse 65%; foot-calf pump, PlexiPulse, 221%; calf pump, VenaFlow, 302% and calf-thigh pumps, Flowtron DVT 87%, SCD System 116% and Jobst Athrombic Pump 263%. All the devices augmented venous volume, the greatest effect being seen with those incorporating calf compression. The increases in ml/min were found in the deep venous system as follows: foot pumps, A-V Impulse System 9.6 and PlexiPulse Foot 16.7; foot-calf pump, PlexiPulse, 38.1; calf pump, VenaFlow, 26.2; calf-thigh pumps, Flowtron DVT 61.5, SCD System 34.7 and Jobst Athrombic Pump 82.3. Active dorsal to plantar flexion generated 8.5 ml for a single calf contraction


Bone & Joint Research
Vol. 7, Issue 8 | Pages 511 - 516
1 Aug 2018
Beverly M Mellon S Kennedy JA Murray DW

Objectives

We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection.

Materials and Methods

Needles were placed in the femoral condyle and proximal tibia of five anaesthetized rabbits and connected to pressure recorders. The limb was loaded with and without proximal vascular occlusion. An additional subject had simultaneous triple recordings at the femoral head, femoral condyle and proximal tibia. In a further subject, saline injections at three sites were carried out in turn.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.


Bone & Joint 360
Vol. 6, Issue 5 | Pages 39 - 40
1 Oct 2017
Das A


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 98 - 107
1 Feb 2017
Kazemi D Shams Asenjan K Dehdilani N Parsa H

Objectives

Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model.

Methods

Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant.


Bone & Joint Research
Vol. 5, Issue 3 | Pages 95 - 100
1 Mar 2016
Pilge H Fröbel J Prodinger PM Mrotzek SJ Fischer JC Zilkens C Bittersohl B Krauspe R

Objectives

Venous thromboembolism (VTE) is a major potential complication following orthopaedic surgery. Subcutaneously administered enoxaparin has been used as the benchmark to reduce the incidence of VTE. However, concerns have been raised regarding the long-term administration of enoxaparin and its possible negative effects on bone healing and bone density with an increase of the risk of osteoporotic fractures. New oral anticoagulants such as rivaroxaban have recently been introduced, however, there is a lack of information regarding how these drugs affect bone metabolism and post-operative bone healing.

Methods

We measured the migration and proliferation capacity of mesenchymal stem cells (MSCs) under enoxaparin or rivaroxaban treatment for three consecutive weeks, and evaluated effects on MSC mRNA expression of markers for stress and osteogenic differentiation.


Bone & Joint Research
Vol. 3, Issue 3 | Pages 76 - 81
1 Mar 2014
Okabe YT Kondo T Mishima K Hayase Y Kato K Mizuno M Ishiguro N Kitoh H

Objectives

In order to ensure safety of the cell-based therapy for bone regeneration, we examined in vivo biodistribution of locally or systemically transplanted osteoblast-like cells generated from bone marrow (BM) derived mononuclear cells.

Methods

BM cells obtained from a total of 13 Sprague-Dawley (SD) green fluorescent protein transgenic (GFP-Tg) rats were culture-expanded in an osteogenic differentiation medium for three weeks. Osteoblast-like cells were then locally transplanted with collagen scaffolds to the rat model of segmental bone defect. Donor cells were also intravenously infused to the normal Sprague-Dawley (SD) rats for systemic biodistribution. The flow cytometric and histological analyses were performed for cellular tracking after transplantation.


Bone & Joint Research
Vol. 4, Issue 4 | Pages 65 - 69
1 Apr 2015
Kearney RS Parsons N Underwood M Costa ML

Objectives

The evidence base to inform the management of Achilles tendon rupture is sparse. The objectives of this research were to establish what current practice is in the United Kingdom and explore clinicians’ views on proposed further research in this area. This study was registered with the ISRCTN (ISRCTN68273773) as part of a larger programme of research.

Methods

We report an online survey of current practice in the United Kingdom, approved by the British Orthopaedic Foot and Ankle Society and completed by 181 of its members. A total of ten of these respondents were invited for a subsequent one-to-one interview to explore clinician views on proposed further research in this area.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 7 | Pages 1041 - 1044
1 Jul 2010
Loughenbury PR Harwood PJ Tunstall R Britten S

Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a cadaver study, 20 formalin-treated legs were divided into two groups. Wires were inserted into the distal quarter of the tibia using two possible corridors and standard techniques of dissection identified the distance of the wires from neurovascular structures.

In both groups the posterior tibial neurovascular bundle was avoided. In group A the peroneal artery was at risk. In group B this injury was avoided. Comparison of the groups showed a significant difference (p < 0.001).

We recommend the Retro-Fibular wire technique whereby wires are inserted into the tibia mid-way between the posteromedial border of the fibula and the tendo Achillis, at 30° to 45° to the sagittal plane, and introduced from a posterolateral to an anteromedial position. Subsequently, when using this technique in 30 patients, we have had no neurovascular complications or problems relating to tethering of the peroneal tendons.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 310 - 316
1 Nov 2014
Tomaszewski R Bohosiewicz J Gap A Bursig H Wysocka A

Objectives

The aim of this experimental study on New Zealand’s white rabbits was to investigate the transplantation of autogenous growth plate cells in order to treat the injured growth plate. They were assessed in terms of measurements of radiological tibial varus and histological characteristics.

Methods

An experimental model of plate growth medial partial resection of the tibia in 14 New Zealand white rabbits was created. During this surgical procedure the plate growth cells were collected and cultured. While the second surgery was being performed, the autologous cultured growth plate cells were grafted at the right tibia, whereas the left tibia was used as a control group.