In an attempt to increase the life of cementless prostheses, an hydroxyapatite-coated implant which releases a bisphosphonate has been suggested as a drug-delivery system. Our in vitro study was designed to determine the maximum dose to which
Objectives. Ubiquitin E3 ligase-mediated protein degradation regulates
Objectives. Effects of insulin-like growth factor 1 (IGF1), fibroblast growth
factor 2 (FGF2) and bone morphogenetic protein 2 (BMP2) on the expression
of genes involved in the proliferation and differentiation of osteoblasts
in culture were analysed. The best sequence of growth factor addition
that induces expansion of cells before their differentiation was
sought. Methods. Primary human
Caveolae, specialised regions of the cell membrane which have been detected in a wide range of mammalian cells, have not been described in bone cells. They are plasmalemmal invaginations, 50 to 100 nm in size, characterised by the presence of the structural protein, caveolin, which exists as three subtypes. Caveolin-1 and caveolin-2 are expressed in a wide range of cell types whereas caveolin-3 is thought to be a muscle-specific subtype. There is little information on the precise function of caveolae, but it has been proposed that they play an important role in signal transduction. As the principal bone-producing cell, the
We have studied in vitro the effect of a hydroxyapatite (HA) tricalcium phosphate material coated with hepatocyte growth factor (HA-HGF) on cell growth, collagen synthesis and secretion of metalloproteinases (MMPs) by human
High-pressure lavage produces greater visible damage to bone at a macroscopic and microscopic level when compared with low-pressure lavage and can result in delay in the healing of fractures. Osteoblasts and adipocytes are derived from mesenchymal stem cells. Conditions which lead to bone loss often involve a switch from the
There is increasing evidence that non-steroidal anti-inflammatory drugs (NSAIDs) can adversely affect bone repair. We have, therefore, studied the in vitro effects of NSAIDs, which differentially inhibit cyclooxygenases (COX), the prostaglandin/thromboxane synthesising enzymes, on human
Aims. This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in
Objectives. Osteophytes are products of active endochondral and intramembranous ossification, and therefore could theoretically provide significant efficacy as bone grafts. In this study, we compared the bone mineralisation effectiveness of osteophytes and cancellous bone, including their effects on secretion of growth factors and anabolic effects on
Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells,
Objectives. Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration. Methods. MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to
Staphylococcus aureus is the bacterial pathogen which is responsible for approximately 80% of all cases of human osteomyelitis. It can invade and remain within
We analysed the effects of commonly used medications
on human
We examined cultured
Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells,
Periprosthetic osteolysis is a major cause of aseptic loosening in artificial joint replacement. It is assumed to occur in conjunction with the activation of macrophages. We have shown in vitro that human osteoblast-like cells, isolated from bone specimens obtained from patients undergoing hip replacement, phagocytose fine particles of titanium alloy (TiAlV). The human osteoblast-like cells were identified immunocytochemically by the presence of bone-specific alkaline phosphatase (BAP). With increasing duration of culture, a variable number of the
Objectives. This study aimed to investigate the functional effects of microRNA (miR)-214-5p on
Objectives. Venous thromboembolism (VTE) is a major potential complication following orthopaedic surgery. Subcutaneously administered enoxaparin has been used as the benchmark to reduce the incidence of VTE. However, concerns have been raised regarding the long-term administration of enoxaparin and its possible negative effects on bone healing and bone density with an increase of the risk of osteoporotic fractures. New oral anticoagulants such as rivaroxaban have recently been introduced, however, there is a lack of information regarding how these drugs affect bone metabolism and post-operative bone healing. Methods. We measured the migration and proliferation capacity of mesenchymal stem cells (MSCs) under enoxaparin or rivaroxaban treatment for three consecutive weeks, and evaluated effects on MSC mRNA expression of markers for stress and osteogenic differentiation. Results. We demonstrate that enoxaparin, but not rivaroxaban, increases the migration potential of MSCs and increases their cell count in line with elevated mRNA expression of C-X-C chemokine receptor type 4 (CXCR4), tumor necrosis factor alpha (TNFα), and alpha-B-crystallin (CryaB). However, a decrease in early osteogenic markers (insulin-like growth factors 1 and 2 (IGF1, IGF2), bone morphogenetic protein2 (BMP2)) indicated inhibitory effects on MSC differentiation into
Periprosthetic bone loss after total joint arthroplasty is a major clinical problem resulting in aseptic loosening of the implant. Among many cell types,
The aim of our study was to investigate the effect of platelet-rich plasma on the proliferation and differentiation of rat bone-marrow cells and to determine an optimal platelet concentration in plasma for osseous tissue engineering. Rat bone-marrow cells embedded in different concentrations of platelet-rich plasma gel were cultured for six days. Their potential for proliferation and osteogenic differentiation was analysed. Using a rat limb-lengthening model, the cultured rat bone-marrow cells with platelet-rich plasma of variable concentrations were transplanted into the distraction gap and the quality of the regenerate bone was evaluated radiologically. Cellular proliferation was enhanced in all the platelet-rich plasma groups in a dose-dependent manner. Although no significant differences in the production and mRNA expression of alkaline phosphatase were detected among these groups, mature bone regenerates were more prevalent in the group with the highest concentration of platelets. Our results indicate that a high platelet concentration in the platelet-rich plasma in combination with