This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).Aims
Methods
Rotator cuff (RC) tears are common musculoskeletal injuries which often require surgical intervention. Noninvasive pulsed electromagnetic field (PEMF) devices have been approved for treatment of long-bone fracture nonunions and as an adjunct to lumbar and cervical spine fusion surgery. This study aimed to assess the effect of continuous PEMF on postoperative RC healing in a rat RC repair model. A total of 30 Wistar rats underwent acute bilateral supraspinatus tear and repair. A miniaturized electromagnetic device (MED) was implanted at the right shoulder and generated focused PEMF therapy. The animals’ left shoulders served as controls. Biomechanical, histological, and bone properties were assessed at three and six weeks.Aims
Methods
We treated 22 patients with a diagnosis of primary frozen shoulder resistant to conservative treatment by manipulation under anaesthetic and arthroscopic release of the rotator interval, at a mean time from onset of 15 months (3 to 36). Biopsies were taken from this site and histological and immunocytochemical analysis was performed to identify the types of cell present. The tissue was characterised by the presence of fibroblasts, proliferating fibroblasts and chronic inflammatory cells. The infiltrate of chronic inflammatory cells was predominantly made up of mast cells, with T cells, B cells and macrophages also present. The pathology of frozen shoulder includes a chronic inflammatory response with fibroblastic proliferation which may be immunomodulated.
We randomised 79 patients (84 hands, 90 fingers) with Dupuytren’s contracture of the proximal interphalangeal joint to have either a ‘firebreak’ skin graft (39 patients, 41 hands, 44 fingers) or a fasciectomy (40 patients, 43 hands, 46 fingers) if, after full correction, the skin over the proximal phalanx could be easily closed by a Z-plasty. Patients were reviewed after three, six, 12, 24 and 36 months to note any complications, the range of movement and recurrence. Both groups were similar in regard to age, gender and factors considered to influence the outcome such as bilateral disease, family history, the presence of diabetes, smoking and alcohol intake. The degree of contracture of the metacarpophalangeal and interphalangeal joints of the operated fingers was similar in the two groups and both were comparable in terms of grip strength, range of movement and disability at each follow-up. The recurrence rate was 12.2%. We did not identify any improvement in correction or recurrence of contracture after firebreak dermofasciectomy up to three years after surgery.
The aim of this study was to define the microcirculation of the normal rotator cuff during arthroscopic surgery and investigate whether it is altered in diseased cuff tissue. Blood flow was measured intra-operatively by laser Doppler flowmetry. We investigated six different zones of each rotator cuff during the arthroscopic examination of 56 consecutive patients undergoing investigation for impingement, cuff tears or instability; there were 336 measurements overall. The mean laser Doppler flowmetry flux was significantly higher at the edges of the tear in torn cuffs (43.1, 95% confidence interval (CI) 37.8 to 48.4) compared with normal cuffs (32.8, 95% CI 27.4 to 38.1; p = 0.0089). It was significantly lower across all anatomical locations in cuffs with impingement (25.4, 95% CI 22.4 to 28.5) compared with normal cuffs (p = 0.0196), and significantly lower in cuffs with impingement compared with torn cuffs (p <
0.0001). Laser Doppler flowmetry analysis of the rotator cuff blood supply indicated a significant difference between the vascularity of the normal and the pathological rotator cuff. We were unable to demonstrate a functional hypoperfusion area or so-called ‘critical zone’ in the normal cuff. The measured flux decreases with advancing impingement, but there is a substantial increase at the edges of rotator cuff tears. This might reflect an attempt at repair.
We have studied cellular and vascular changes in different stages of full thickness tears of the rotator cuff. We examined biopsies from the supraspinatus tendon in 40 patients with chronic rotator cuff tears who were undergoing surgery and compared them with biopsies from four uninjured subscapularis tendons. Morphological and immunocytochemical methods using monoclonal antibodies directed against leucocytes, macrophages, mast cells, proliferative and vascular markers were used. Histological changes indicative of repair and inflammation were most evident in small sized rotator cuff tears with increased fibroblast cellularity and intimal hyperplasia, together with increased expression of leucocyte and vascular markers. These reparative and inflammatory changes diminished as the size of the rotator cuff tear increased. Marked oedema and degeneration was seen in large and massive tears, which more often showed chondroid metaplasia and amyloid deposition. There was no association between the age of the patient and the duration of symptoms. In contrast, large and massive tears showed no increase in the number of inflammatory cells and blood vessels. Small sized rotator cuff tears retained the greatest potential to heal, showing increased fibroblast cellularity, blood vessel proliferation and the presence of a significant inflammatory component. Tissue from large and massive tears is of such a degenerative nature that it may be a significant cause of re-rupture after surgical repair and could make healing improbable in this group.