This study aims to describe a new method that may be used as a supplement to evaluate humeral rotational alignment during intramedullary nail (IMN) insertion using the profile of the perpendicular peak of the greater tuberosity and its relation to the transepicondylar axis. We called this angle the greater tuberosity version angle (GTVA). This study analyzed 506 cadaveric humeri of adult patients. All humeri were CT scanned using 0.625 × 0.625 × 0.625 mm cubic voxels. The images acquired were used to generate 3D surface models of the humerus. Next, 3D landmarks were automatically calculated on each 3D bone using custom-written C++ software. The anatomical landmarks analyzed were the transepicondylar axis, the humerus anatomical axis, and the peak of the perpendicular axis of the greater tuberosity. Lastly, the angle between the transepicondylar axis and the greater tuberosity axis was calculated and defined as the GTVA.Aims
Methods
Objectives. This investigation sought to advance the work published in our prior biomechanical study (Journal of Orthopaedic Research, 2016). We specifically sought to determine whether there are additional easy-to-measure parameters on plain radiographs of the proximal humerus that correlate more strongly with ultimate fracture load, and whether a parameter resembling the Dorr strength/quality characterisation of proximal
It has been hypothesized that proximal radial neck resorption (PRNR) following press-fit radial head arthroplasty (RHA) is due to stress-shielding. We compared two different press-fit stems by means of radiographs to investigate whether the shape and size of the stems are correlated with the degree of PRNR. The radiographs of 52 RHAs were analyzed both at 14 days postoperatively and after two years. A cylindrical stem and a conical stem were implanted in 22 patients (group 1) and 30 patients (group 2), respectively. The PRNR was measured in the four quadrants of the radial neck and the degree of stem filling was calculated by analyzing the ratio between the prosthetic stem diameter (PSD) and the medullary canal diameter (MCD) at the proximal portion of the stem (level A), halfway along the stem length (level B), and distally at the stem tip (level C).Aims
Methods
The goal of this study is to investigate the relation between indicators of osteoporosis (i.e., bone mineral density (BMD), and Cortical Index (CI)) and the complexity of a fracture of the proximal humerus as a result of a low-energy trauma. A retrospective chart review of 168 patients (mean age 67.2 years, range 51 to 88.7) with a fracture of the proximal humerus between 2007 and 2011, whose BMD was assessed at the Fracture Liaison Service with Dual Energy X-ray Absorptiometry (DXA) measurements of the hip, femoral neck (FN) and/or lumbar spine (LS), and whose CI and complexity of fracture were assessed on plain anteroposterior radiographs of the proximal humerus.Objectives
Methods
The ageing population and an increase in both
the incidence and prevalence of cancer pose a healthcare challenge, some
of which is borne by the orthopaedic community in the form of osteoporotic
fractures and metastatic bone disease. In recent years there has
been an increasing understanding of the pathways involved in bone
metabolism relevant to osteoporosis and metastases in bone. Newer
therapies may aid the management of these problems. One group of
drugs, the antibody mediated anti-resorptive therapies (AMARTs)
use antibodies to block bone resorption pathways. This review seeks
to present a synopsis of the guidelines, pharmacology and potential pathophysiology
of AMARTs and other new anti-resorptive drugs. We evaluate the literature relating to AMARTs and new anti-resorptives
with special attention on those approved for use in clinical practice. Denosumab, a monoclonal antibody against Receptor Activator for
Nuclear Factor Kappa-B Ligand. It is the first AMART approved by
the National Institute for Health and Clinical Excellence and the
US Food and Drug Administration. Other novel anti-resorptives awaiting
approval for clinical use include Odanacatib. Denosumab is indicated for the treatment of osteoporosis and
prevention of the complications of bone metastases. Recent evidence
suggests, however, that denosumab may have an adverse event profile
similar to bisphosphonates, including atypical femoral fractures.
It is, therefore, essential that orthopaedic surgeons are conversant
with these medications and their safe usage. Take home message: Denosumab has important orthopaedic indications
and has been shown to significantly reduce patient morbidity in
osteoporosis and metastatic bone disease. Cite this article: