Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint Open
Vol. 1, Issue 7 | Pages 405 - 414
15 Jul 2020
Abdelaal A Munigangaiah S Trivedi J Davidson N

Aims

Magnetically controlled growing rods (MCGR) have been gaining popularity in the management of early-onset scoliosis (EOS) over the past decade. We present our experience with the first 44 MCGR consecutive cases treated at our institution.

Methods

This is a retrospective review of consecutive cases of MCGR performed in our institution between 2012 and 2018. This cohort consisted of 44 children (25 females and 19 males), with a mean age of 7.9 years (3.7 to 13.6). There were 41 primary cases and three revisions from other rod systems. The majority (38 children) had dual rods. The group represents a mixed aetiology including idiopathic (20), neuromuscular (13), syndromic (9), and congenital (2). The mean follow-up was 4.1 years, with a minimum of two years. Nine children graduated to definitive fusion. We evaluated radiological parameters of deformity correction (Cobb angle), and spinal growth (T1-T12 and T1-S1 heights), as well as complications during the course of treatment.


Abstract. MAGnetic Expansion Control (MAGEC) rods are used in the surgical treatment of children with early onset scoliosis. The magnetically controlled lengthening mechanism enables rod distractions without the need for repeated invasive surgery. The CE certification of these devices was suspended in March 2021 due, primarily, to performance evidence gaps in the documents provided by the manufacturer to regulators and notified bodies. MAGEC rods are therefore not permitted for use in countries requiring CE marking. This was a survey of 18 MAGEC rod surgeons in the UK about their perception of the impact of the CE suspension on the clinical management of their patients. Unsurprisingly, virtually all perceived a negative impact, reflecting the complexity of this patient group. Reassuringly, these surgeons are highly experienced in alternative treatment methods. Cite this article: Bone Jt Open 2022;3(2):155–157


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 507 - 515
1 Apr 2018
Nnadi C Thakar C Wilson-MacDonald J Milner P Rao A Mayers D Fairbank J Subramanian T

Aims. The primary aim of this study was to evaluate the performance and safety of magnetically controlled growth rods in the treatment of early onset scoliosis. Secondary aims were to evaluate the clinical outcome, the rate of further surgery, the rate of complications, and the durability of correction. Patients and Methods. We undertook an observational prospective cohort study of children with early onset scoliosis, who were recruited over a one-year period and followed up for a minimum of two years. Magnetically controlled rods were introduced in a standardized manner with distractions performed three-monthly thereafter. Adverse events which were both related and unrelated to the device were recorded. Ten children, for whom relevant key data points (such as demographic information, growth parameters, Cobb angles, and functional outcomes) were available, were recruited and followed up over the period of the study. There were five boys and five girls. Their mean age was 6.2 years (2.5 to 10). Results. The mean coronal Cobb angle improved from 57.6° (40° to 81°) preoperatively, 32.8° (28° to 46°) postoperatively, and 41° (19° to 57°) at two years. Five children had an adverse event, with four requiring return to theatre, but none were related to the device. There were no neurological complications or infections. No devices failed. One child developed a proximal junctional kyphosis. The mean gain in spinal column height from T1 to S1 was 45.4 mm (24 to 81) over the period of the study. Conclusion. Magnetically controlled growth rods provide an alternative solution to traditional growing rods in the surgical management of children with early onset scoliosis, supporting growth of the spine while controlling curve progression. Their use has clear psychosocial and economic benefits, with the reduction of the need for repeat surgery as required with traditional growing rods. Cite this article: Bone Joint J 2018;100-B:507–15


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1375 - 1383
3 Oct 2020
Zhang T Sze KY Peng ZW Cheung KMC Lui YF Wong YW Kwan KYH Cheung JPY

Aims. To investigate metallosis in patients with magnetically controlled growing rods (MCGRs) and characterize the metal particle profile of the tissues surrounding the rod. Methods. This was a prospective observational study of patients with early onset scoliosis (EOS) treated with MCGRs and undergoing rod exchange who were consecutively recruited between February 2019 and January 2020. Ten patients were recruited (mean age 12 years (SD 1.3); 2 M:8 F). The configurations of the MCGR were studied to reveal the distraction mechanisms, with crucial rod parts being the distractable piston rod and the magnetically driven rotor inside the barrel of the MCGR. Metal-on-metal contact in the form of ring-like wear marks on the piston was found on the distracted portion of the piston immediately outside the barrel opening (BO) through which the piston rod distracts. Biopsies of paraspinal muscles and control tissue samples were taken over and away from the wear marks, respectively. Spectral analyses of the rod alloy and biopsies were performed to reveal the metal constituents and concentrations. Histological analyses of the biopsies were performed with haematoxylin and eosin staining. Results. Titanium (Ti), vanadium (V), and neodymium (Nd) concentrations in the biopsies taken near the wear marks were found to be significantly higher than those in the control tissue samples. Significantly increased Nd concentrations were also found in the tissues near the barrel of the MCGR. Chronic inflammation was revealed by the histological studies with fibrosis and macrophage infiltration. Black particles were present within the macrophages in the fibrotic tissues. Conclusion. Ti and V were generated mainly at the BO due to metal-on-metal contact, whereas the Nd from the rotor of the MCGR is likely released from the BO during distraction sessions. Phagocytotic immune cells with black particles inside raise concern regarding the long-term implications of metallosis. Cite this article: Bone Joint J 2020;102-B(10):1375–1383


Bone & Joint Open
Vol. 1, Issue 3 | Pages 19 - 28
3 Mar 2020
Tsirikos AI Roberts SB Bhatti E

Aims

Severe spinal deformity in growing patients often requires surgical management. We describe the incidence of spinal deformity surgery in a National Health Service.

Methods

Descriptive study of prospectively collected data. Clinical data of all patients undergoing surgery for spinal deformity between 2005 and 2018 was collected, compared to the demographics of the national population, and analyzed by underlying aetiology.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1560 - 1566
2 Nov 2020
Mehdian H Haddad S Pasku D Nasto LA

Aims

To report the mid-term results of a modified self-growing rod (SGR) technique for the treatment of idiopathic and neuromuscular early-onset scoliosis (EOS).

Methods

We carried out a retrospective analysis of 16 consecutive patients with EOS treated with an SGR construct at a single hospital between September 2008 and December 2014. General demographics and deformity variables (i.e. major Cobb angle, T1 to T12 length, T1 to S1 length, pelvic obliquity, shoulder obliquity, and C7 plumb line) were recorded preoperatively, and postoperatively at yearly follow-up. Complications and revision procedures were also recorded. Only patients with a minimum follow-up of five years after surgery were included.


The Bone & Joint Journal
Vol. 99-B, Issue 6 | Pages 829 - 833
1 Jun 2017
Pereira EAC Oxenham M Lam KS

Aims

In the United Kingdom, lower incidences of intraspinal abnormalities in patients with early onset idiopathic scoliosis have been observed than in studies in other countries. We aimed to determine the rates of these abnormalities in United Kingdom patients diagnosed with idiopathic scoliosis before the age of 11 years.

Patients and Methods

This retrospective study of patients attending an urban scoliosis clinic identified 71 patients satisfying a criteria of: clinical diagnosis of idiopathic scoliosis; age of onset ten years and 11 months or less; MRI screening for intraspinal abnormalities. United Kingdom census data combined with patient referral data was used to calculate incidence.


The Bone & Joint Journal
Vol. 99-B, Issue 12 | Pages 1658 - 1664
1 Dec 2017
Ahmad A Subramanian T Panteliadis P Wilson-Macdonald J Rothenfluh DA Nnadi C

Aims

Magnetically controlled growing rods (MCGRs) allow non-invasive correction of the spinal deformity in the treatment of early-onset scoliosis. Conventional growing rod systems (CGRS) need repeated surgical distractions: these are associated with the effect of the ‘law of diminishing returns’.

The primary aim of this study was to quantify this effect in MCGRs over sequential distractions.

Patients and Methods

A total of 35 patients with a maximum follow-up of 57 months were included in the study. There were 17 boys and 18 girls with a mean age of 7.4 years (2 to 14). True Distraction (TD) was determined by measuring the expansion gap on fluoroscopy. This was compared with Intended Distraction (ID) and expressed as the ‘T/I’ ratio. The T/I ratio and the Cobb angle were calculated at several time points during follow-up.


The Bone & Joint Journal
Vol. 100-B, Issue 6 | Pages 772 - 779
1 Jun 2018
Helenius IJ Oksanen HM McClung A Pawelek JB Yazici M Sponseller PD Emans JB Sánchez Pérez-Grueso FJ Thompson GH Johnston C Shah SA Akbarnia BA

Aims

The aim of this study was to compare the outcomes of surgery using growing rods in patients with severe versus moderate early-onset scoliosis (EOS).

Patients and Methods

A review of a multicentre EOS database identified 107 children with severe EOS (major curve ≥ 90°) treated with growing rods before the age of ten years with a minimum follow-up of two years and three or more lengthening procedures. From the same database, 107 matched controls with moderate EOS were identified.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1662 - 1667
1 Dec 2016
Teoh KH von Ruhland C Evans SL James SH Jones A Howes J Davies PR Ahuja S

Aims

We present a case series of five patients who had revision surgery following magnetic controlled growing rods (MGCR) for early onset scoliosis. Metallosis was found during revision in four out of five patients and we postulated a mechanism for rod failure based on retrieval analysis.

Patients and Methods

Retrieval analysis was performed on the seven explanted rods. The mean duration of MCGR from implantation to revision was 35 months (17 to 46). The mean age at revision was 12 years (7 to 15; four boys, one girl).


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1240 - 1247
1 Sep 2016
Thompson W Thakar C Rolton DJ Wilson-MacDonald J Nnadi C

Aims

We undertook a prospective non-randomised radiological study to evaluate the preliminary results of using magnetically-controlled growing rods (MAGEC System, Ellipse technology) to treat children with early-onset scoliosis.

Patients and Methods

Between January 2011 and January 2015, 19 children were treated with magnetically-controlled growing rods (MCGRs) and underwent distraction at three-monthly intervals. The mean age of our cohort was 9.1 years (4 to 14) and the mean follow-up 22.4 months (5.1 to 35.2). Of the 19 children, eight underwent conversion from traditional growing rods. Whole spine radiographs were carried out pre- and post-operatively: image intensification was used during each lengthening in the outpatient department. The measurements evaluated were Cobb angle, thoracic kyphosis, proximal junctional kyphosis and spinal growth from T1 to S1.


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 75 - 80
1 Jan 2013
Dannawi Z Altaf F Harshavardhana NS El Sebaie H Noordeen H

Conventional growing rods are the most commonly used distraction-based devices in the treatment of progressive early-onset scoliosis. This technique requires repeated lengthenings with the patient anaesthetised in the operating theatre. We describe the outcomes and complications of using a non-invasive magnetically controlled growing rod (MCGR) in children with early-onset scoliosis. Lengthening is performed on an outpatient basis using an external remote control with the patient awake.

Between November 2009 and March 2011, 34 children with a mean age of eight years (5 to 12) underwent treatment. The mean length of follow-up was 15 months (12 to 18). In total, 22 children were treated with dual rod constructs and 12 with a single rod. The mean number of distractions per patient was 4.8 (3 to 6). The mean pre-operative Cobb angle was 69° (46° to 108°); this was corrected to a mean 47° (28° to 91°) post-operatively. The mean Cobb angle at final review was 41° (27° to 86°). The mean pre-operative distance from T1 to S1 was 304 mm (243 to 380) and increased to 335 mm (253 to 400) in the immediate post-operative period. At final review the mean distance from T1 to S1 had increased to 348 mm (260 to 420).

Two patients developed a superficial wound infection and a further two patients in the single rod group developed a loss of distraction. In the dual rod group, one patient had pull-out of a hook and one developed prominent metalwork. Two patients had a rod breakage; one patient in the single rod group and one patient in the dual rod group. Our early results show that the MCGR is safe and effective in the treatment of progressive early-onset scoliosis with the avoidance of repeated surgical lengthenings.

Cite this article: Bone Joint J 2013;95-B:75–80.