The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.Aims
Methods
Wrong-level surgery is a unique pitfall in spinal
surgery and is part of the wider field of wrong-site surgery. Wrong-site
surgery affects both patients and surgeons and has received much
media attention. We performed this systematic review to determine
the incidence and prevalence of wrong-level procedures in spinal
surgery and to identify effective prevention strategies. We retrieved
12 studies reporting the incidence or prevalence of wrong-site surgery
and that provided information about prevention strategies. Of these,
ten studies were performed on patients undergoing lumbar spine surgery
and two on patients undergoing lumbar, thoracic or cervical spine procedures.
A higher frequency of wrong-level surgery in lumbar procedures than
in cervical procedures was found. Only one study assessed preventative
strategies for wrong-site surgery, demonstrating that current site-verification protocols
did not prevent about one-third of the cases. The current literature
does not provide a definitive estimate of the occurrence of wrong-site
spinal surgery, and there is no published evidence to support the
effectiveness of site-verification protocols. Further prevention
strategies need to be developed to reduce the risk of wrong-site surgery.
The scoliosis observed in chickens after pinealectomy resembles that seen in humans with an adolescent idiopathic scoliosis, suggesting that melatonin deficiency may be responsible. However, to date there have been no studies of pineal gland glucose metabolism in patients with adolescent idiopathic scoliosis that might support this hypothesis. We examined the excretion of urinary 6-sulfatoxyl-melatonin as well as the glucose metabolism of the pineal gland in 14 patients with an adolescent idiopathic scoliosis and compared them with those of 13 gender-matched healthy controls using F-18 fluorodeoxyglucose brain positron emission tomography. There was no significant difference in the level of urinary 6-sulfatoxyl-melatonin or pineal gland metabolism between the study and the control group. We conclude that permanent melatonin deficiency is not a causative factor in the aetiology of adolescent idiopathic scoliosis.