Advertisement for orthosearch.org.uk
Results 1 - 20 of 462
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 490 - 494
1 Apr 2007
Arimitsu S Murase T Hashimoto J Oka K Sugamoto K Yoshikawa H Moritomo H

We have measured the three-dimensional patterns of carpal deformity in 20 wrists in 20 rheumatoid patients in which the carpal bones were shifted ulnarwards on plain radiography. Three-dimensional bone models of the carpus and radius were created by computerised tomography with the wrist in the neutral position. The location of the centroids and rotational angle of each carpal bone relative to the radius were calculated and compared with those of ten normal wrists. In the radiocarpal joint, the proximal row was flexed and the centroids of all carpal bones translocated in an ulnar, proximal and volar direction with loss of congruity. In the midcarpal joint, the distal row was extended and congruity generally well preserved. These findings may facilitate more positive use of radiocarpal fusion alone for the deformed rheumatoid wrist


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 752 - 760
1 Jun 2007
Yamada Y Toritsuka Y Horibe S Sugamoto K Yoshikawa H Shino K

We used three-dimensional movement analysis by computer modelling of knee flexion from 0° to 50° in 14 knees in 12 patients with recurrent patellar dislocation and in 15 knees in ten normal control subjects to compare the in vivo three-dimensional movement of the patella. Flexion, tilt and spin of the patella were described in terms of rotation angles from 0°. The location of the patella and the tibial tubercle were evaluated using parameters expressed as percentage patellar shift and percentage tubercle shift. Patellar inclination to the femur was also measured and patellofemoral contact was qualitatively and quantitatively analysed. The patients had greater values of spin from 20° to 50°, while there were no statistically significant differences in flexion and tilt. The patients also had greater percentage patellar shift from 0° to 50°, percentage tubercle shift at 0° and 10° and patellar inclination from 0° to 50° with a smaller oval-shaped contact area from 20° to 50° moving downwards on the lateral facet. Patellar movement analysis using a three-dimensional computer model is useful to clearly demonstrate differences between patients with recurrent dislocation of the patella and normal control subjects


The Journal of Bone & Joint Surgery British Volume
Vol. 70-B, Issue 5 | Pages 777 - 783
1 Nov 1988
Karrholm J Selvik G Elmqvist L Hansson L Jonsson H

Using roentgen stereophotogrammetry we have recorded the three-dimensional movements of the knee during an anteroposterior laxity test in 36 patients with torn anterior cruciate ligaments and in three cadaver knees. At 30 degrees of knee flexion and before loads were applied the tibia occupied a more laterally rotated position if the anterior cruciate ligament had been injured. When the tibia was pulled anteriorly knees with cruciate deficiency rotated more laterally and were more abducted than normal knees. Posterior traction induced lateral rotation in the injured knee and medial rotation in the intact one. Precise knowledge of the three-dimensional instability of the anterior cruciate deficient knee may be important when the laxity is evaluated only in relation to one of the three cardinal axes


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 766 - 771
1 Jun 2009
Brunner A Honigmann P Treumann T Babst R

We evaluated the impact of stereo-visualisation of three-dimensional volume-rendering CT datasets on the inter- and intraobserver reliability assessed by kappa values on the AO/OTA and Neer classifications in the assessment of proximal humeral fractures. Four independent observers classified 40 fractures according to the AO/OTA and Neer classifications using plain radiographs, two-dimensional CT scans and with stereo-visualised three-dimensional volume-rendering reconstructions. Both classification systems showed moderate interobserver reliability with plain radiographs and two-dimensional CT scans. Three-dimensional volume-rendered CT scans improved the interobserver reliability of both systems to good. Intraobserver reliability was moderate for both classifications when assessed by plain radiographs. Stereo visualisation of three-dimensional volume rendering improved intraobserver reliability to good for the AO/OTA method and to excellent for the Neer classification. These data support our opinion that stereo visualisation of three-dimensional volume-rendering datasets is of value when analysing and classifying complex fractures of the proximal humerus


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 857 - 865
1 Sep 1997
Boileau P Walch G

We have studied the three-dimensional geometry of the proximal humerus on human cadaver specimens using a digitised measuring device linked to a computer. Our findings demonstrated the variable shape of the proximal humerus as well as its variable dimensions. The articular surface, which is part of a sphere varies individually in its orientation as regards inclination and retroversion, and it has variable medial and posterior offsets. These variations cannot be accommodated by the designs of most contemporary humeral components. Although good clinical results can be achieved with current modular and non-modular components their relatively fixed geometry prevents truly anatomical restoration in many cases. To try to restore the original three-dimensional geometry of the proximal humerus, we have developed a new type of humeral component which is modular and adaptable to the individual anatomy. Such adaptability allows correct positioning of the prosthetic head in relation to an individual anatomical neck, after removal of the marginal osteophytes. The design of this third-generation prosthesis respects the four geometrical variations which have been demonstrated in the present study. These are inclination, retroversion, medial offset and posterior offset


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1520 - 1523
1 Nov 2005
Attias N Lindsey RW Starr AJ Borer D Bridges K Hipp JA

We created virtual three-dimensional reconstruction models from computed tomography scans obtained from patients with acetabular fractures. Virtual cylindrical implants were placed intraosseously in the anterior column, the posterior column and across the dome of the acetabulum. The maximum diameter which was entirely contained within the bone was determined for each position of the screw. In the same model, the cross-sectional diameters of the columns were measured and compared to the maximum diameter of the corresponding virtual implant. We found that the mean maximum diameter of virtual implant accommodated by the anterior columns was 6.4 mm and that the smallest diameter of the columns was larger than the maximum diameter of the equivalent virtual implant. This study suggests that the size of the screw used for percutaneous fixation of acetabular fractures should not be based solely on the measurement of cross-sectional diameter and that virtual three-dimensional reconstructions might be useful in pre-operative planning


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 6 | Pages 746 - 751
1 Jun 2007
Yamada Y Toritsuka Y Yoshikawa H Sugamoto K Horibe S Shino K

We investigated the three-dimensional morphological differences of the articular surface of the femoral trochlea in patients with recurrent dislocation of the patella and a normal control group using three-dimensional computer models. There were 12 patients (12 knees) and ten control subjects (ten knees). Three-dimensional computer models of the femur, including the articular cartilage, were created. Evaluation was performed on the shape of the articular surface, focused on its convexity, and the proximal and mediolateral distribution of the articular cartilage of the femoral trochlea. The extent of any convexity, and the proximal distribution of the articular cartilage, expressed as the height, were shown by the angles about the transepicondylar axis. The mediolateral distribution of the articular cartilage was assessed by the location of the medial and lateral borders of the articular cartilage. The mean extent of convexity was 24.9° . sd. 6.7° for patients and 11.9° . sd. 3.6° for the control group (p < 0.001). The mean height of the articular cartilage was 91.3° . sd. 8.3° for the patients and 83.3° . sd. 7.7° for the control group (p = 0.03), suggesting a wider convex trochlea in the patients with recurrent dislocation of the patella caused by the proximally-extended convex area. The lateral border of the articular cartilage of the trochlea in the patients was more laterally located than in the control group. Our findings therefore quantitatively demonstrated differences in the shape and distribution of the articular cartilage on the femoral trochlea between patients with dislocation of the patella and normal subjects


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 5 | Pages 795 - 801
1 Sep 1991
Jeffery A Blunn G Archer C Bentley G

The three-dimensional architecture of bovine articular cartilage collagen and its relationship to split lines has been studied with scanning electron microscopy. In the middle and superficial zones, collagen was organised in a layered or leaf-like manner. The orientation was vertical in the intermediate zone, curving to become horizontal and parallel to the articular surface in the superficial zone. Each leaf consisted of a fine network of collagen fibrils. Adjacent leaves merged or were closely linked by bridging fibrils and were arranged according to the split-line pattern. The surface layer (lamina splendens) was morphologically distinct. Although ordered, the overall collagen structure was different in each plane (anisotropic) a property described in previous morphological and biophysical studies. As all components of the articular cartilage matrix interact closely, the three-dimensional organisation of collagen is important when considering cartilage function and the processes of cartilage growth, injury and repair


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 513 - 518
1 Apr 2014
Terrier A Ston J Larrea X Farron A

The three-dimensional (3D) correction of glenoid erosion is critical to the long-term success of total shoulder replacement (TSR). In order to characterise the 3D morphology of eroded glenoid surfaces, we looked for a set of morphological parameters useful for TSR planning. We defined a scapular coordinates system based on non-eroded bony landmarks. The maximum glenoid version was measured and specified in 3D by its orientation angle. Medialisation was considered relative to the spino-glenoid notch. We analysed regular CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When the maximum version of OA shoulders was higher than 10°, the orientation was not only posterior, but extended in postero-superior (35%), postero-inferior (6%) and anterior sectors (4%). The medialisation of the glenoid was higher in OA than normal shoulders. The orientation angle of maximum version appeared as a critical parameter to specify the glenoid shape in 3D. It will be very useful in planning the best position for the glenoid in TSR. Cite this article: Bone Joint J 2014;96-B:513–18


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 11 | Pages 1495 - 1498
1 Nov 2008
Shen J Tong P Qu H

This randomised study compared outcomes in patients with displaced fractures of the clavicle treated by open reduction and fixation by a reconstruction plate which was placed either superiorly or three-dimensionally. Between 2003 and 2006, 133 consecutive patients with a mean age of 44.2 years (18 to 60) with displaced midshaft fractures of the clavicle were allocated randomly to a three-dimensional (3D) (67 patients) or superior group (66). Outcome measures included the peri-operative outcome index, delayed union, revision surgery and symptoms beyond 16 weeks. CT was used to reconstruct an image of each affected clavicle and Photoshop 7.0 software employed to calculate the percentage of the clavicular cortical area in the sagittal plane. The patients were reviewed clinically and radiographically at four and 12 months after the operation. The superior plate group had a higher rate of delayed union and had more symptomatic patients than the 3D group (p < 0.05). The percentage comparisons of cortical bone area showed that cortical bone in the superior distal segment is thicker than in the inferior segment, it is also thicker in the anterior mid-section than in the posterior (p < 0.05). If fixation of midshaft fractures of the clavicle with a plate is indicated, a 3D reconstruction plate is better than one placed superiorly, because it is consistent with the stress distribution and shape of the clavicle


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives. Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults. Methods. A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed. Results. Both cadence and step length were reduced during slow gait compared with normal gait. Slow walking reduced flexion during standing (10.6° compared with 13.7°; p < 0.0001), and flexion range of movement (ROM) (53.1° compared with 57.3°; p < 0.0001). Slow walking also induced less adduction ROM (8.3° compared with 10.0°; p < 0.0001), rotation ROM (11.4. °. compared with 13.6. °. ; p < 0.0001), and anteroposterior translation ROM (8.5 mm compared with 10.1 mm; p < 0.0001). Conclusion. The reduced spatiotemporal measures, reduced flexion during stance, and knee ROM in all planes induced by slow walking demonstrate a stiff knee gait, similar to that previously demonstrated in osteoarthritis. Further research is required to determine if these characteristics induced in healthy knees by slow walking provide a valid model of osteoarthritic gait. Cite this article: N. Mannering, T. Young, T. Spelman, P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 2017;6:514–521. DOI: 10.1302/2046-3758.68.BJR-2016-0296.R1


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1214 - 1221
1 Sep 2014
d’Entremont AG McCormack RG Horlick SGD Stone TB Manzary MM Wilson DR

Although it is clear that opening-wedge high tibial osteotomy (HTO) changes alignment in the coronal plane, which is its objective, it is not clear how this procedure affects knee kinematics throughout the range of joint movement and in other planes. Our research question was: how does opening-wedge HTO change three-dimensional tibiofemoral and patellofemoral kinematics in loaded flexion in patients with varus deformity?Three-dimensional kinematics were assessed over 0° to 60° of loaded flexion using an MRI method before and after opening-wedge HTO in a cohort of 13 men (14 knees). Results obtained from an iterative statistical model found that at six and 12 months after operation, opening-wedge HTO caused increased anterior translation of the tibia (mean 2.6 mm, p <  0.001), decreased proximal translation of the patella (mean –2.2 mm, p <  0.001), decreased patellar spin (mean –1.4°, p < 0.05), increased patellar tilt (mean 2.2°, p < 0.05) and changed three other parameters. The mean Western Ontario and McMaster Universities Arthritis Index improved significantly (p < 0.001) from 49.6 (standard deviation (. sd. ) 16.4) pre-operatively to a mean of 28.2 (. sd. 16.6) at six months and a mean of 22.5 (. sd.  14.4) at 12 months. The three-dimensional kinematic changes found may be important in explaining inconsistency in clinical outcomes, and suggest that measures in addition to coronal plane alignment should be considered. . Cite this article: Bone Joint J 2014; 96-B:1214–21


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1586 - 1591
1 Dec 2007
Flecher X Parratte S Aubaniac J Argenson J

A clinical and radiological study was conducted on 97 total hip replacements performed for congenital hip dislocation in 79 patients between 1989 and 1998 using a three-dimensional custom-made cementless stem. The mean age at operation was 48 years (17 to 72) and the mean follow-up was for 123 months (83 to 182). According to the Crowe classification, there were 37 class I, 28 class II, 13 class III and 19 class IV hips. The mean leg lengthening was 25 mm (5 to 58), the mean pre-operative femoral anteversion was 38.6° (2° to 86°) and the mean correction in the prosthetic neck was −23.6° (−71° to 13°). The mean Harris hip score improved from 58 (15 to 84) to 93 (40 to 100) points. A revision was required in six hips (6.2%). The overall survival rate was 89.5% (95% confidence interval 89.2 to 89.8) at 13 years when two hips were at risk. This custom-made cementless femoral component, which can be accommodated in the abnormal proximal femur and will correct the anteversion and frontal offset, provided good results without recourse to proximal femoral corrective osteotomy


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 333 - 340
1 Mar 2009
Sariali E Mouttet A Pasquier G Durante E Catone Y

Pre-operative computerised three-dimensional planning was carried out in 223 patients undergoing total hip replacement with a cementless acetabular component and a cementless modular-neck femoral stem. Components were chosen which best restored leg length and femoral offset. The post-operative restoration of the anatomy was assessed by CT and compared with the pre-operative plan. The component implanted was the same as that planned in 86% of the hips for the acetabular implant, 94% for the stem, and 93% for the neck-shaft angle. The rotational centre of the hip was restored with a mean accuracy of 0.73 mm (. sd. 3.5) craniocaudally and 1.2 mm (. sd. 2) laterally. Limb length was restored with a mean accuracy of 0.3 mm (. sd. 3.3) and femoral offset with a mean accuracy of 0.8 mm (. sd. 3.1). This method appears to offer high accuracy in hip reconstruction as the difficulties likely to be encountered when restoring the anatomy can be anticipated and solved pre-operatively by optimising the selection of implants. Modularity of the femoral neck helped to restore the femoral offset and limb length


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 409 - 416
1 Mar 2009
Anders JO Mollenhauer J Beberhold A Kinne RW Venbrocks RA

The gelatin-based haemostyptic compound Spongostan was tested as a three-dimensional (3D) chondrocyte matrix in an in vitro model for autologous chondrocyte transplantation using cells harvested from bovine knees. In a control experiment of monolayer cultures, the proliferation or de-differentiation of bovine chondrocytes was either not or only marginally influenced by the presence of Spongostan (0.3 mg/ml). In monolayers and 3-D Minusheet culture chambers, the cartilage-specific differentiation markers aggrecan and type-II collagen were ubiquitously present in a cell-associated fashion and in the pericellular matrix. The Minusheet cultures usually showed a markedly higher mRNA expression than monolayer cultures irrespective of whether Spongostan had been present or not during culture. Although the de-differentiation marker type-I collagen was also present, the ratio of type-I to type-II collagen or aggrecan to type-I collagen remained higher in Minusheet 3-D cultures than in monolayer cultures irrespective of whether Spongostan had been included in or excluded from the monolayer cultures. The concentration of GAG in Minusheet cultures reached its maximum after 14 days with a mean of 0.83 ± 0.8 μg/10. 6. cells; mean ±, . sem. , but remained considerably lower than in monolayer cultures with/without Spongostan. Our results suggest that Spongostan is in principle suitable as a 3-D chondrocyte matrix, as demonstrated in Minusheet chambers, in particular for a culture period of 14 days. Clinically, differentiating effects on chondrocytes, simple handling and optimal formability may render Spongostan an attractive 3-D scaffold for autologous chondrocyte transplantation


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 3 | Pages 408 - 412
1 May 1989
Howell F Newman R Wang H Nevelos A Dickson R

A new method of recording the three-dimensional anatomy of the proximal femur from a single anteroposterior radiograph is described. This technique shows that in Perthes' disease the femoral head and neck are in significant anteversion and true varus. This anatomical configuration may be important in the pathogenesis and treatment of this disorder


Bone & Joint Research
Vol. 2, Issue 1 | Pages 1 - 8
1 Jan 2013
Costa AJ Lustig S Scholes CJ Balestro J Fatima M Parker DA

Objectives. There remains a lack of data on the reliability of methods to estimate tibial coverage achieved during total knee replacement. In order to address this gap, the intra- and interobserver reliability of a three-dimensional (3D) digital templating method was assessed with one symmetric and one asymmetric prosthesis design. Methods. A total of 120 template procedures were performed according to specific rotational and over-hang criteria by three observers at time zero and again two weeks later. Total and sub-region coverage were calculated and the reliability of the templating and measurement method was evaluated. Results. Excellent intra- and interobserver reliability was observed for total coverage, when minimal component overhang (intraclass correlation coefficient (ICC) = 0.87) or no component overhang (ICC = 0.92) was permitted, regardless of rotational restrictions. Conclusions. Measurement of tibial coverage can be reliable using the templating method described even if the rotational axis selected still has a minor influence


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1031 - 1036
1 Aug 2009
Dandachli W Islam SU Liu M Richards R Hall-Craggs M Witt J

This study examined the relationship between the cross-over sign and the true three-dimensional anatomical version of the acetabulum. We also investigated whether in true retroversion there is excessive femoral head cover anteriorly. Radiographs of 64 hips in patients being investigated for symptoms of femoro-acetabular impingement were analysed and the presence of a cross-over sign was documented. CT scans of the same hips were analysed to determine anatomical version and femoral head cover in relation to the anterior pelvic plane after correcting for pelvic tilt. The sensitivity and specificity of the cross-over sign were 92% and 55%, respectively for identifying true acetabular retroversion. There was no significant difference in total cover between normal and retroverted cases. Anterior and posterior cover were, however, significantly different (p < 0.001 and 0.002). The cross-over sign was found to be sensitive but not specific. The results for femoral head cover suggest that retroversion is characterised by posterior deficiency but increased cover anteriorly


The Journal of Bone & Joint Surgery British Volume
Vol. 76-B, Issue 1 | Pages 150 - 154
1 Jan 1994
Bilic R Zdravkovic V Boljevic Z

A computer-assisted method of preoperative planning was used to create virtual models of the deformed distal end of the radius after malunion of a fracture. By comparison with a similar model of the uninjured wrist, values were calculated for the angles and lengths to be corrected by osteotomy. Shifts of the distal fragment were analysed for 33 deformed wrists, 27 of which underwent corrective osteotomy and bone grafting. In more than half the cases there was dorsal or volar shift of 3 mm or more. The accuracy of the correction was measured by comparing the three-dimensional models before and after osteotomy with the model of the normal wrist. The volar and ulnar inclination angles of the articular surface of the radius and the radial length were regularly restored to normal


The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 580 - 589
1 May 2014
Nakahara I Takao M Sakai T Miki H Nishii T Sugano N

To confirm whether developmental dysplasia of the hip has a risk of hip impingement, we analysed maximum ranges of movement to the point of bony impingement, and impingement location using three-dimensional (3D) surface models of the pelvis and femur in combination with 3D morphology of the hip joint using computer-assisted methods. Results of computed tomography were examined for 52 hip joints with DDH and 73 normal healthy hip joints. DDH shows larger maximum extension (p = 0.001) and internal rotation at 90° flexion (p < 0.001). Similar maximum flexion (p = 0.835) and external rotation (p = 0.713) were observed between groups, while high rates of extra-articular impingement were noticed in these directions in DDH (p < 0.001). Smaller cranial acetabular anteversion (p = 0.048), centre-edge angles (p < 0.001), a circumferentially shallower acetabulum, larger femoral neck anteversion (p < 0.001), and larger alpha angle were identified in DDH. Risk of anterior impingement in retroverted DDH hips is similar to that in retroverted normal hips in excessive adduction but minimal in less adduction. These findings might be borne in mind when considering the possibility of extra-articular posterior impingement in DDH being a source of pain, particularly for patients with a highly anteverted femoral neck. Cite this article: Bone Joint J 2014;96-B:580–9