Advertisement for orthosearch.org.uk
Results 1 - 20 of 908
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 53 - 58
1 Jul 2021
Lawrie CM Bechtold D Schwabe M Clohisy JC

Aims. The direct anterior approach (DAA) for total hip arthroplasty (THA) has potential advantages over other approaches and is most commonly performed with the patient in the supine position. We describe a technique for DAA THA with the patient in the lateral decubitus position and report the early clinical and radiological outcomes, the characteristics of the learning curve, and perioperative complications. Methods. All primary DAA THAs performed in the lateral position by a single surgeon over a four-year period from the surgeon’s first case using the technique were identified from a prospectively collected database. Modified Harris Hip Scores (mHHS) were collected to assess clinical outcome, and routine radiological analysis was performed. Retrospective review of the medical records identified perioperative complications, the characteristics of the learning curve, and revisions. Results. A total of 257 patients were included in the study. Their mean age was 60 years (SD 9.0). A total of 164 (64%) were female. The mean mHHS improved significantly from 52.1 (SD 16.2) preoperatively to 94.4 (SD 11) at a follow-up of one year (p < 0.001), with 212 of 225 patients (94%) achieving a minimal clinically important difference (MCID) (> 8 points). Radiological evaluation showed a mean leg length discrepancy of 2.6 mm (SD 5.9) and a mean difference in femoral offset of 0.2 mm (SD 4.9). A total of 234/243 acetabular components (96.3%) were positioned within Lewinnek’s safe zone. Analysis of operating time, blood loss, the position of the components, and complications did not identify a learning curve. A total of 14 patients (5.4%) had a major perioperative complication and three (1.2%) required revision THA. There were no major neurovascular complications and no dislocations. Conclusion. We have described and analyzed a surgical technique for undertaking DAA THA in the familiar lateral decubitus position using a routine operating table, positioning devices, and instrumentation, and shown that it can be performed safely and effectively under these circumstances. Cite this article: Bone Joint J 2021;103-B(7 Supple B):53–58


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1035 - 1042
1 Dec 2021
Okowinski M Hjorth MH Mosegaard SB Jürgens-Lahnstein JH Storgaard Jakobsen S Hedevang Christensen P Kold S Stilling M

Aims. Femoral bone preparation using compaction technique has been shown to preserve bone and improve implant fixation in animal models. No long-term clinical outcomes are available. There are no significant long-term differences between compaction and broaching techniques for primary total hip arthroplasty (THA) in terms of migration, clinical, and radiological outcomes. Methods. A total of 28 patients received one-stage bilateral primary THA with cementless femoral stems (56 hips). They were randomized to compaction on one femur and broaching on the contralateral femur. Overall, 13 patients were lost to the ten-year follow-up leaving 30 hips to be evaluated in terms of stem migration (using radiostereometry), radiological changes, Harris Hip Score, Oxford Hip Score, and complications. Results. Over a mean follow-up period of 10.6 years, the mean stem subsidence was similar between groups, with a mean of -1.20 mm (95% confidence interval (CI) -2.28 to -0.12) in the broaching group and a mean of -0.73 mm (95% CI -1.65 to 0.20) in the compaction group (p = 0.07). The long-term migration patterns of all stems were similar. The clinical and radiological outcomes were similar between groups. There were two intraoperative fractures in the compaction group that were fixed with cable wire and healed without complications. No stems were revised. Conclusion. Similar stem subsidence and radiological and clinical outcomes were identified after the use of compaction and broaching techniques of the femur at long-term follow-up. Only the compaction group had intraoperative periprosthetic femur fractures, but there were no long-term consequences of these. Cite this article: Bone Jt Open 2021;2(12):1035–1042


Bone & Joint Open
Vol. 3, Issue 5 | Pages 423 - 431
1 May 2022
Leong JWY Singhal R Whitehouse MR Howell JR Hamer A Khanduja V Board TN

Aims. The aim of this modified Delphi process was to create a structured Revision Hip Complexity Classification (RHCC) which can be used as a tool to help direct multidisciplinary team (MDT) discussions of complex cases in local or regional revision networks. Methods. The RHCC was developed with the help of a steering group and an invitation through the British Hip Society (BHS) to members to apply, forming an expert panel of 35. We ran a mixed-method modified Delphi process (three rounds of questionnaires and one virtual meeting). Round 1 consisted of identifying the factors that govern the decision-making and complexities, with weighting given to factors considered most important by experts. Participants were asked to identify classification systems where relevant. Rounds 2 and 3 focused on grouping each factor into H1, H2, or H3, creating a hierarchy of complexity. This was followed by a virtual meeting in an attempt to achieve consensus on the factors which had not achieved consensus in preceding rounds. Results. The expert group achieved strong consensus in 32 out of 36 factors following the Delphi process. The RHCC used the existing Paprosky (acetabulum and femur), Unified Classification System, and American Society of Anesthesiologists (ASA) classification systems. Patients with ASA grade III/IV are recognized with a qualifier of an asterisk added to the final classification. The classification has good intraobserver and interobserver reliability with Kappa values of 0.88 to 0.92 and 0.77 to 0.85, respectively. Conclusion. The RHCC has been developed through a modified Delphi technique. RHCC will provide a framework to allow discussion of complex cases as part of a local or regional hip revision MDT. We believe that adoption of the RHCC will provide a comprehensive and reproducible method to describe each patient’s case with regard to surgical complexity, in addition to medical comorbidities that may influence their management. Cite this article: Bone Jt Open 2022;3(5):423–431


Bone & Joint Research
Vol. 9, Issue 7 | Pages 386 - 393
1 Jul 2020
Doyle R van Arkel RJ Muirhead-Allwood S Jeffers JRT

Aims. Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component?. Methods. A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers. Results. A phenomenon of strain deterioration was identified if an excessive number of strikes was used to seat a component. This effect was most pronounced in low-density bone at high strike velocities. Polar gap was reduced with increasing strike mass and velocity. Conclusion. A high mallet mass with low strike velocity resulted in satisfactory implant stability and polar gap, while minimizing the risk of losing stability due to over-striking. Extreme caution not to over-strike must be exercised when using high velocity strikes in low-density bone for any mallet mass. Cite this article: Bone Joint Res 2020;9(7):386–393


Bone & Joint Open
Vol. 5, Issue 9 | Pages 776 - 784
19 Sep 2024
Gao J Chai N Wang T Han Z Chen J Lin G Wu Y Bi L

Aims

In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance.

Methods

A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims

Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model.

Methods

Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods.


Bone & Joint Open
Vol. 2, Issue 5 | Pages 278 - 292
3 May 2021
Miyamoto S Iida S Suzuki C Nakatani T Kawarai Y Nakamura J Orita S Ohtori S

Aims. The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA. Methods. A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis. Results. RLLs were detected in 27.2% of patients one year postoperatively. In multivariate regression analysis controlling for confounders, atrophic osteoarthritis (odds ratio (OR) 2.17 (95% confidence interval (CI), 1.04 to 4.49); p = 0.038) and 26 mm (OR 3.23 (95% CI 1.85 to 5.66); p < 0.001) or 28 mm head diameter (OR 3.64 (95% CI 2.07 to 6.41); p < 0.001) had a significantly greater risk for any RLLs one year after surgery. Structural bone graft (OR 0.19 (95% CI 0.13 to 0.29) p < 0.001) and location of the hip centre within the true acetabular region (OR 0.15 (95% CI 0.09 to 0.24); p < 0.001) were significantly less prognostic. Improvement of the cement-bone interface including complete disappearance and poorly defined RLLs was identified in 15.1% of patients. Kaplan-Meier survival analysis for the acetabular component at ten years with revision of the acetabular component for aseptic loosening as the end point was 100.0% with a RLL and 99.1% without a RLL (95% CI 97.9 to 100). With revision of the acetabular component for any reason as the end point, the survival rate was 99.2% with a RLL (95% CI 97.6 to 100) and 96.5% without a RLL (95% CI 93.4 to 99.7). Conclusion. This study demonstrates that acetabular bone quality, head diameter, structural bone graft, and hip centre position may influence the presence of the any RLL. Cite this article: Bone Joint Open 2021;2(5):278–292


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims. Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Methods. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated. Results. Mean measurement errors of the image-matching analyses were significantly small (2.5° (SD 1.4°) and 0.1° (SD 0.9°) in the RA and RI, respectively) relative to those of the 2D measurements. Intra- and interobserver differences were similarly small from the clinical perspective. Conclusion. We have developed a computational analysis of acetabular component orientation using an image-matching technique with small measurement errors compared to visual evaluations regardless of the pelvic tilt or rotation. Cite this article: Bone Joint Res 2020;9(7):360–367


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 33 - 40
1 Jul 2020
Gustafson JA Pourzal R Levine BR Jacobs JJ Lundberg HJ

Aims. The aim of this study was to develop a novel computational model for estimating head/stem taper mechanics during different simulated assembly conditions. Methods. Finite element models of generic cobalt-chromium (CoCr) heads on a titanium stem taper were developed and driven using dynamic assembly loads collected from clinicians. To verify contact mechanics at the taper interface, comparisons of deformed microgroove characteristics (height and width of microgrooves) were made between model estimates with those measured from five retrieved implants. Additionally, these models were used to assess the role of assembly technique—one-hit versus three-hits—on the taper interlock mechanical behaviour. Results. The model compared well to deformed microgrooves from the retrieved implants, predicting changes in microgroove height (mean 1.1 μm (0.2 to 1.3)) and width (mean 7.5 μm (1.0 to 18.5)) within the range of measured changes in height (mean 1.4 μm (0.4 to 2.3); p = 0.109) and width (mean 12.0 μm (1.5 to 25.4); p = 0.470). Consistent with benchtop studies, our model found that increasing assembly load magnitude led to increased taper engagement, contact pressure, and permanent deformation of the stem taper microgrooves. Interestingly, our model found assemblies using three hits at low loads (4 kN) led to decreased taper engagement, contact pressures and microgroove deformations throughout the stem taper compared with tapers assembled with one hit at the same magnitude. Conclusion. These findings suggest additional assembly hits at low loads lead to inferior taper interlock strength compared with one firm hit, which may be influenced by loading rate or material strain hardening. These unique models can estimate microgroove deformations representative of real contact mechanics seen on retrievals, which will enable us to better understand how both surgeon assembly techniques and implant design affect taper interlock strength. Cite this article: Bone Joint J 2020;102-B(7 Supple B):33–40


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 909 - 914
1 Jul 2018
Sheth NP Melnic CM Brown N Sporer SM Paprosky WG

Aims. The aim of this study was to examine the results of the acetabular distraction technique in achieving implantation of a stable construct, obtaining biological fixation, and producing healing of chronic pelvic discontinuity at revision total hip arthroplasty. Patients and Methods. We identified 32 patients treated between 2006 and 2013 who underwent acetabular revision for a chronic pelvic discontinuity using acetabular distraction, and who were radiographically evaluated at a mean of 62 months (25 to 160). Of these patients, 28 (87.5%) were female. The mean age at the time of revision was 67 years (44 to 86). The patients represented a continuous series drawn from two institutions that adhered to an identical operative technique. Results. Of the 32 patients, one patient required a revision for aseptic loosening, two patients had evidence of radiographic loosening but were not revised, and three patients had migration of the acetabular component into a more stable configuration. Radiographically, 22 (69%) of the cohort demonstrated healing of the discontinuity. The Kaplan–Meier construct survivorship was 83.3% when using revision for aseptic acetabular loosening as an endpoint. At the time when one patient failed due to aseptic loosening (at 7.4 years), there were a total of seven patients with a follow-up of seven years or longer who were at risk of failure. Conclusion. The acetabular distraction technique demonstrates encouraging radiographic outcomes, with healing of the discontinuity in over two-thirds of our series. This surgical technique permits biological fixation and intraoperative customization of the construct to be implanted based on the pattern of the bone loss identified following component removal. Cite this article: Bone Joint J 2018;100-B:909–14


Bone & Joint Research
Vol. 10, Issue 9 | Pages 574 - 590
7 Sep 2021
Addai D Zarkos J Pettit M Sunil Kumar KH Khanduja V

Outcomes following different types of surgical intervention for femoroacetabular impingement (FAI) are well reported individually but comparative data are deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyze the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO), and surgical hip dislocation (SHD). This SR was registered with PROSPERO. An electronic database search of PubMed, Medline, and EMBASE for English and German language articles over the last 20 years was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We specifically analyzed and compared changes in patient-reported outcome measures (PROMs), α-angle, rate of complications, rate of revision, and conversion to total hip arthroplasty (THA). A total of 48 articles were included for final analysis with a total of 4,384 hips in 4,094 patients. All subgroups showed a significant correction in mean α angle postoperatively with a mean change of 28.8° (95% confidence interval (CI) 21 to 36.5; p < 0.01) after AMO, 21.1° (95% CI 15.1 to 27; p < 0.01) after SHD, and 20.5° (95% CI 16.1 to 24.8; p < 0.01) after HA. The AMO group showed a significantly higher increase in PROMs (3.7; 95% CI 3.2 to 4.2; p < 0.01) versus arthroscopy (2.5; 95% CI 2.3 to 2.8; p < 0.01) and SHD (2.4; 95% CI 1.5 to 3.3; p < 0.01). However, the rate of complications following AMO was significantly higher than HA and SHD. All three surgical approaches offered significant improvements in PROMs and radiological correction of cam deformities. All three groups showed similar rates of revision procedures but SHD had the highest rate of conversion to a THA. Revision rates were similar for all three revision procedures.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 282 - 288
1 Apr 2018
Beckmann NA Bitsch RG Gondan M Schonhoff M Jaeger S

Objectives. In order to address acetabular defects, porous metal revision acetabular components and augments have been developed, which require fixation to each other. The fixation technique that results in the smallest relative movement between the components, as well as its influence on the primary stability with the host bone, have not previously been determined. Methods. A total of 18 composite hemipelvises with a Paprosky IIB defect were implanted using a porous titanium 56 mm multihole acetabular component and 1 cm augment. Each acetabular component and augment was affixed to the bone using two screws, while the method of fixation between the acetabular component and augment varied for the three groups of six hemipelvises: group S, screw fixation only; group SC, screw plus cement fixation; group C, cement fixation only. The implanted hemipelvises were cyclically loaded to three different loading maxima (0.5 kN, 0.9 kN, and 1.8 kN). Results. Screw fixation alone resulted in up to three times more movement (p = 0.006), especially when load was increased to 100% (p < 0.001), than with the other two fixation methods (C and SC). No significant difference was noted when a screw was added to the cement fixation. Increased load resulted in increased relative movement between the interfaces in all fixation methods (p < 0.001). Conclusion. Cement fixation between a porous titanium acetabular component and augment is associated with less relative movement than screw fixation alone for all implant interfaces, particularly with increasing loads. Adding a screw to the cement fixation did not offer any significant advantage. These results also show that the stability of the tested acetabular component/augment interface affects the stability of the construct that is affixed to the bone. Cite this article: N. A. Beckmann, R. G. Bitsch, M. Gondan, M. Schonhoff, S. Jaeger. Comparison of the stability of three fixation techniques between porous metal acetabular components and augments. Bone Joint Res 2018;7:282–288. DOI: 10.1302/2046-3758.74.BJR-2017-0198.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 6 | Pages 730 - 733
1 Jun 2006
Quinlan JF O’Shea K Doyle F Brady OH

The in-cement technique for revision hip arthroplasty involves retaining the original cement-bone interface. This has been proven to be a biomechanically stronger method than recementing after complete removal of the original cement mantle. This study reviewed a series of 54 consecutive revision hip arthroplasty procedures, using the in-cement technique, between November 1999 and November 2003. Clinical and radiological follow-up included functional assessment. There were 54 procedures performed in 51 patients, whose mean age at surgery was 70.3 years (45 to 85). A total of 42 were available at a mean follow-up of 29.2 months (6 to 51). There was no radiological evidence of loosening. Functional assessments were available for 40 patients who had a mean Harris hip score of 85.2 (51.9 to 98.5), a mean Oxford hip score of 19.6 (12 to 41), a mean UCLA activity profile score of 5.9 (3 to 8) and a mean SF-36 score of 78.0 (31.6 to 100). The in-cement technique provides consistent, high functional outcomes and should be considered in appropriately selected cases


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 313 - 319
1 Mar 2016
Baker P Rankin K Naisby S Agni N Brewster N Holland J

Aims . The highly cross-linked polyethylene Exeter RimFit flanged cemented acetabular component was introduced in the United Kingdom in 2010. This study aimed to examine the rates of emergence of radiolucent lines observed when the Rimfit acetabular component was implanted at total hip arthroplasty (THA) using two different techniques: firstly, the ‘rimcutter’ technique in which the flange sits on a pre-prepared acetabular rim; and secondly, the ‘trimmed flange’ technique in which the flange is trimmed and the acetabular component is seated inside the rim of the acetabulum. . Patients and Methods . The radiographs of 150 THAs (75 ‘rimcutter’, 75 ‘trimmed flange’) involving this component were evaluated to assess for radiolucencies at the cement/bone interface by three observers. . Results . Rimfit acetabular components implanted using the rimcutter technique had significantly higher rates of radiolucency than those introduced using the ‘trimmed flange’ technique one year post-operatively (one zone: 63/75 (84%) vs 17/75 (23%); two zones 42/75 (56%) vs 0/75 (0%); all three zones 17/75 (23%) vs 0/75 (0%):(all p < 0.001). . Conclusion . On the basis of these findings, we have stopped using the ‘rimcutter’ technique when implanting the Rimfit acetabular component and have reverted to the ‘trimmed flange’ technique. Take home message: Surgeons should be vigilant of the performance of the Rimfit acetabular component when used alongside the rim cutter device due to an observed higher rate of progressive radiolucencies with this combination of component / technique. Cite this article: Bone Joint J 2016;98-B:313–19


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 154 - 159
1 Feb 2015
Halai M Gupta S Gilmour A Bharadwaj R Khan A Holt G

We evaluated an operative technique, described by the Exeter Hip Unit, to assist accurate introduction of the femoral component. We assessed whether it led to a reduction in the rate of leg-length discrepancy after total hip arthroplasty (THA). A total of 100 patients undergoing THA were studied retrospectively; 50 were undertaken using the test method and 50 using conventional methods as a control group. The groups were matched with respect to patient demographics and the grade of surgeon. Three observers measured the depth of placement of the femoral component on post-operative radiographs and measured the length of the legs. There was a strong correlation between the depth of insertion of the femoral component and the templated depth in the test group (R = 0.92), suggesting accuracy of the technique. The mean leg-length discrepancy was 5.1 mm (0.6 to 21.4) pre-operatively and 1.3 mm (0.2 to 9.3) post-operatively. There was no difference between Consultants and Registrars as primary surgeons. Agreement between the templated and post-operative depth of insertion was associated with reduced post-operative leg-length discrepancy. The intra-class coefficient was R ≥ 0.88 for all measurements, indicating high observer agreement. The post-operative leg-length discrepancy was significantly lower in the test group (1.3 mm) compared with the control group (6.3 mm, p < 0.001). The Exeter technique is reproducible and leads to a lower incidence of leg-length discrepancy after THA. Cite this article: Bone Joint J 2015;97-B:154–9


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 31 - 36
1 Jan 2009
de Jong PT de Man FHR Haverkamp D Marti RK

We report the long-term outcome of a modified second-generation cementing technique for fixation of the acetabular component of total hip replacement. An earlier report has shown the superiority of this technique assessed by improved survival compared with first-generation cementing. The acetabular preparation involved reaming only to the subchondral plate, followed by impaction of the bone in the anchorage holes. Between 1978 and 1993, 287 total hip replacements were undertaken in 244 patients with a mean age of 65.3 years (21 to 90) using a hemispherical Weber acetabular component with this modified technique for cementing and a cemented femoral component. The survival with acetabular revision for aseptic loosening as the endpoint was 99.1% (95% confidence interval 97.9 to 100 after ten years and 85.5% (95% confidence interval 74.7 to 96.2) at 20 years. Apart from contributing to a long-lasting fixation of the component, this technique also preserved bone, facilitating revision surgery when necessary


Bone & Joint Research
Vol. 7, Issue 5 | Pages 351 - 356
1 May 2018
Yeoman TFM Clement ND Macdonald D Moran M

Objectives. The primary aim of this study was to assess the reproducibility of the recalled preoperative Oxford Hip Score (OHS) and Oxford Knee Score (OKS) one year following arthroplasty for a cohort of patients. The secondary aim was to assess the reliability of a patient’s recollection of their own preoperative OHS and OKS one year following surgery. Methods. A total of 335 patients (mean age 72.5; 22 to 92; 53.7% female) undergoing total hip arthroplasty (n = 178) and total knee arthroplasty (n = 157) were prospectively assessed. Patients undergoing hip and knee arthroplasty completed an OHS or OKS, respectively, preoperatively and were asked to recall their preoperative condition while completing the same score one year after surgery. Results. A mean difference of 0.04 points (95% confidence intervals (CI) -15.64 to 15.72, p = 0.97) between the actual and the recalled OHS was observed. The mean difference in the OKS was 1.59 points (95% CI -11.57 to 14.75, p = 0.10). There was excellent reliability for the ‘average measures’ intra-class correlation for both the OHS (r = 0.802) and the OKS (r = 0.772). However, this reliability was diminished for the individuals OHS (r = 0.670) and OKS (r = 0.629) using single measures intra-class correlation. Bland–Altman plots demonstrated wide variation in the individual patient’s ability to recall their preoperative score (95% CI ± 16 for OHS, 95% CI ± 13 for OKS). Conclusion. Prospective preoperative collection of OHS and OKS remains the benchmark. Using recalled scores one year following hip and knee arthroplasty is an alternative when used to assess a cohort of patients. However, the recall of an individual patient’s preoperative score should not be relied upon due to the diminished reliability and wide CI. Cite this article: T. F. M. Yeoman, N. D. Clement, D. Macdonald, M. Moran. Recall of preoperative Oxford Hip and Knee Scores one year after arthroplasty is an alternative and reliable technique when used for a cohort of patients. Bone Joint Res 2018;7:351–356. DOI: 10.1302/2046-3758.75.BJR-2017-0259.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 6 | Pages 724 - 730
1 Jun 2008
Hartofilakidis G Georgiades G Babis GC Yiannakopoulos CK

We have evaluated the results of total hip replacement in patients with congenital hip disease using 46 cemented all-polyethylene Charnley acetabular components implanted with the cotyloplasty technique in 34 patients (group A), and compared them with 47 metal-backed cementless acetabular components implanted without bone grafting in 33 patients (group B). Patients in group A were treated between 1988 and 1993 and those in group B between 1990 and 1995. The mean follow-up for group A was 16.6 years (12 to 18) and the mean follow-up for group B was 13.4 years (10 to 16). Revision for aseptic loosening was undertaken in 15 hips (32.6%) in group A and in four hips (8.5%) in group B. When liner exchange was included, a total of 13 hips were revised in group B (27.7%). The mean polyethylene wear was 0.11 mm/yr (0.002 to 0.43) and 0.107 mm/yr (0 to 0.62) for groups A and B, respectively. Polyethylene wear in group A was associated with linear osteolysis, and in group B with expansile osteolysis. In patients with congenital hip disease, when 80% cover of the implant can be obtained, a cementless acetabular component appears to be acceptable and provides durable fixation. However, because of the type of osteolysis arising with these devices, early exchange of a worn liner is recommended before extensive bone loss makes revision surgery more complicated


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 173 - 178
1 Feb 2012
Malizos KN Papasoulis E Dailiana ZH Papatheodorou LK Varitimidis SE

The introduction of a trabecular tantalum rod has been proposed for the management of early-stage osteonecrosis of the femoral head but serves as a single-point of support of the necrotic lesion. We describe a technique using two or three 4.2 mm (or later 4.7 mm) tantalum pegs for the prevention of collapse of the necrotic lesion. We prospectively studied 21 patients (26 hips) with non-traumatic osteonecrosis of the femoral head treated in this manner. Of these, 21 patients (24 hips) were available for radiological and clinical evaluation at a mean follow-up of 46 months (18 to 67). Radiological assessment showed that only eight hips deteriorated according to the Association Research Circulation Osseous classification, and four hips according to the Classification of the Japanese Investigation Committee of Health and Welfare. Functional improvement was obtained with an improvement in the mean Harris hip score from 65.2 (33.67 to 95) to 88.1 (51.72 to 100), the mean Merle D’Aubigné-Postel score from 13 (6 to 18) to 16 (11 to 18), a mean visual analogue score for pain from 5.2 (0 to 9.5) to 2.6 (0 to 7), and the mean Short-Form 36 score from 80.4 (56.8 to 107.1) to 92.4 (67.5 to 115.7). Of these 24 hips followed for a minimum of 18 months, three were considered as failures at the final follow-up, having required total hip replacement. One of the hips without full follow-up was also considered to be a failure. In more than two-thirds of the surviving hips a satisfactory clinical outcome was achieved with promising radiological findings. The estimated mean implant survival was 60 months (95% confidence interval 53.7 to 66.3)


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 781 - 785
1 Jun 2005
Temmerman OPP Raijmakers PGHM Berkhof J Hoekstra OS Teule GJJ Heyligers IC

In this meta-analysis we included 32 English-language articles published between January 1975 and June 2004 on the diagnostic performance of plain radiography, subtraction arthrography, nuclear arthrography and bone scintigraphy in detecting aseptic loosening of the femoral component, using criteria based on the Cochrane systematic review of screening and diagnostic tests. The mean sensitivity and specificity were, respectively, 82% (95% confidence interval (CI) 76 to 87) and 81% (95% CI 73 to 87) for plain radiography and 85% (95% CI 75 to 91) and 83% (95% CI 75 to 89) for nuclear arthrography. Pooled sensitivity and specificity were, respectively, 86% (95% CI 74 to 93) and 85% (95% CI 77 to 91) for subtraction arthrography and 85% (95% CI 79 to 89) and 72% (95% CI 64 to 79) for bone scintigraphy. Although the diagnostic performance of the imaging techniques was not significantly different, plain radiography and bone scintigraphy are preferred for the assessment of a femoral component because of their efficacy and lower risk of patient morbidity