Staphylococcus aureus is one
of the leading causes of
The objective of this study was to determine the effectiveness of screening and successful treatment of methicillin-resistant Staphylococcus aureus (MRSA) colonisation in elective orthopaedic patients on the subsequent risk of developing a
In the UK, the NHS generates an estimated 25 megatonnes of carbon dioxide equivalents (4% to 5% of the nation’s total carbon emissions) and produces over 500,000 tonnes of waste annually. There is limited evidence demonstrating the principles of sustainability and its benefits within orthopaedic surgery. The primary aim of this study was to analyze the environmental impact of orthopaedic surgery and the environmentally sustainable initiatives undertaken to address this. The secondary aim of this study was to describe the barriers to making sustainable changes within orthopaedic surgery. A literature search was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines through EMBASE, Medline, and PubMed libraries using two domains of terms: “orthopaedic surgery” and “environmental sustainability”.Aims
Methods
Fresh-frozen allograft bone is frequently used
in orthopaedic surgery. We investigated the incidence of allograft-related
infection and analysed the outcomes of recipients of bacterial culture-positive
allografts from our single-institute bone bank during bone transplantation.
The fresh-frozen allografts were harvested in a strict sterile environment
during total joint arthroplasty surgery and immediately stored in
a freezer at -78º to -68º C after packing. Between January 2007
and December 2012, 2024 patients received 2083 allografts with a
minimum of 12 months of follow-up. The overall allograft-associated
infection rate was 1.2% (24/2024). Swab cultures of 2083 allografts
taken before implantation revealed 21 (1.0%) positive findings.
The 21 recipients were given various antibiotics at the individual
orthopaedic surgeon’s discretion. At the latest follow-up, none
of these 21 recipients displayed clinical signs of infection following
treatment. Based on these findings, we conclude that an incidental positive
culture finding for allografts does not correlate with subsequent
surgical site infection. Additional prolonged post-operative antibiotic
therapy may not be necessary for recipients of fresh-frozen bone
allograft with positive culture findings. Cite this article:
As of April 2010 all NHS institutions in the United Kingdom are required to publish data on surgical site infection, but the method for collecting this has not been decided. We examined 7448 trauma and orthopaedic surgical wounds made in patients staying for at least two nights between 2000 and 2008 at our institution and calculated the rate of surgical site infection using three definitions: the US Centers for Disease Control, the United Kingdom Nosocomial Infection National Surveillance Scheme and the ASEPSIS system. On the same series of wounds, the infection rate with outpatient follow-up according to Centre for Disease Control was 15.45%, according to the UK Nosocomial infection surveillance was 11.32%, and according to ASEPSIS was 8.79%. These figures highlight the necessity for all institutions to use the same method for diagnosing surgical site infection. If different methods are used, direct comparisons will be invalid and published rates of infection will be misleading.
Post-discharge surveillance of surgical site infection is necessary if accurate rates of infection following surgery are to be available. We undertook a prospective study of 376 knee and hip replacements in 366 patients in order to estimate the rate of orthopaedic surgical site infection in the community. The inpatient infection was 3.1% and the post-discharge infection rate was 2.1%. We concluded that the use of telephone interviews of patients to identify the group at highest risk of having a surgical site infection (those who think they have an infection) with rapid follow-up by a professional trained to diagnose infection according to agreed criteria is an effective method of identifying infection after discharge from hospital.
The Control of Infection Committee at a specialist orthopaedic hospital prospectively collected data on all episodes of bacteriologically-proven deep infection arising after primary hip and knee replacements over a 15-year period from 1987 to 2001. There were 10 735 patients who underwent primary hip or knee replacement. In 34 of 5947 hip replacements (0.57%) and 41 of 4788 knee replacements (0.86%) a deep infection developed. The most common infecting micro-organism was coagulase-negative staphylococcus, followed by Of the infections, 29% (22) arose in the first three months following surgery, 35% between three months and one year (26), and 36% (27) after one year. Most cases were detected early and treated aggressively, with eradication of the infection in 96% (72). There was no significant change in the infection rate or type of infecting micro-organism over the course of this study. These results set a benchmark, and importantly emphasise that only 64% of peri-prosthetic infections arise within one year of surgery. These results also illustrate the advantages of conducting joint replacement surgery in the isolation of a specialist hospital.