Aims. Porous metaphyseal cones can be used for fixation in revision total knee arthroplasty (rTKA) and complex TKAs. This metaphyseal fixation has led to some surgeons using
Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics. Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system.Aims
Methods
Recent total knee arthroplasty (TKA) designs have featured more anatomical morphologies and shorter tibial keels. However, several reports have raised concerns about the impact of these modifications on implant longevity. The aim of this study was to report the early performance of a modern, cemented TKA design. All patients who received a primary, cemented TKA between 2012 and 2017 with a minimum two-year follow-up were included. The implant investigated features an asymmetrical tibial baseplate and shortened keel. Patient demographic details, Knee Society Scores (KSS), component alignment, and the presence of radiolucent lines at final follow-up were recorded. Kaplan-Meier analyses were performed to estimate survivorship.Aims
Methods
Aseptic loosening of the tibial component is a frequent cause of failure in primary total knee arthroplasty (TKA). Management options include an isolated tibial revision or full component revision. A full component revision is frequently selected by surgeons unfamiliar with the existing implant or who simply wish to “start again”. This option adds morbidity compared with an isolated tibial revision. While isolated tibial revision has a lower morbidity, it is technically more challenging due to difficulties with exposure and maintaining prosthetic stability. This study was designed to compare these two reconstructive options. Patients undergoing revision TKA for isolated aseptic tibial loosening between 2012 and 2017 were identified. Those with revision implants or revised for infection, instability, osteolysis, or femoral component loosening were excluded. A total of 164 patients were included; 88 had an isolated tibial revision and 76 had revision of both components despite only having a loose tibial component. The demographics and clinical and radiological outcomes were recorded.Aims
Methods
The optimal method of tibial component fixation remains uncertain
in total knee arthroplasty (TKA). Hydroxyapatite coatings have been
applied to improve bone ingrowth in uncemented designs, but may
only coat the directly accessible surface. As peri-apatite (PA)
is solution deposited, this may increase the coverage of the implant
surface and thereby fixation. We assessed the tibial component fixation
of uncemented PA-coated TKAs Patients were randomised to PA-coated or cemented TKAs. In 60
patients (30 in each group), radiostereometric analysis of tibial
component migration was evaluated as the primary outcome at baseline,
three months post-operatively and at one, two and five years. A
linear mixed-effects model was used to analyse the repeated measurements.Aims
Patients and Methods
Orthopaedic surgeons use stems in revision knee surgery to obtain
stability when metaphyseal bone is missing. No consensus exists
regarding stem size or method of fixation. This A custom test rig using differential variable reluctance transducers
(DVRTs) was developed to record all translational and rotational
motions at the bone–implant interface. Composite femurs were used.
These were secured to permit variation in flexion angle from 0°
to 90°. Cyclic loads were applied through a tibial component based
on three peaks corresponding to 0°, 10° and 20° flexion from a normal
walking cycle. Three different femoral components were investigated
in this study for cementless and cemented interface conditions.Objectives
Methods
Preservation of posterior condylar offset (PCO) has been shown to correlate with improved functional results after primary total knee arthroplasty (TKA). Whether this is also the case for revision TKA, remains unknown. The aim of this study was to assess the independent effect of PCO on early functional outcome after revision TKA. A total of 107 consecutive aseptic revision TKAs were performed by a single surgeon during an eight-year period. The mean age was 69.4 years (39 to 85) and there were 59 female patients and 48 male patients. The Oxford Knee Score (OKS) and Short-form (SF)-12 score were assessed pre-operatively and one year post-operatively. Patient satisfaction was also assessed at one year. Joint line and PCO were assessed radiographically at one year.Objectives
Methods
Revision knee arthroplasty presents a number
of challenges, not least of which is obtaining solid primary fixation
of implants into host bone. Three anatomical zones exist within
both femur and tibia which can be used to support revision implants.
These consist of the joint surface or epiphysis, the metaphysis
and the diaphysis. The methods by which fixation in each zone can
be obtained are discussed. The authors suggest that solid fixation
should be obtained in at least two of the three zones and emphasise
the importance of pre-operative planning and implant selection. Cite this article:
Stems improve the mechanical stability of tibial
components in total knee replacement (TKR), but come at a cost of stress
shielding along their length. Their advantages include resistance
to shear, reduced tibial lift-off and increased stability by reducing
micromotion. Longer stems may have disadvantages including stress
shielding along the length of the stem with associated reduction
in bone density and a theoretical risk of subsidence and loosening, peri-prosthetic
fracture and end-of-stem pain. These features make long stems unattractive
in the primary TKR setting, but often desirable in revision surgery
with bone loss and instability. In the revision scenario, stems
are beneficial in order to convey structural stability to the construct
and protect the reconstruction of bony defects. Cemented and uncemented
long stemmed implants have different roles depending on the nature
of the bone loss involved. This review discusses the biomechanics of the design of tibial
components and stems to inform the selection of the component and
the technique of implantation.
Structural allografts may be used to manage uncontained
bone defects in revision total knee replacement (TKR). However,
the availability of cadaver grafts is limited in some areas of Asia.
The aim of this study was to evaluate the mid-term outcome of the
use of femoral head allografts for the reconstruction of uncontained
defects in revision TKR, focusing on complications related to the
graft. We retrospectively reviewed 28 patients (30 TKRs) with Anderson
Orthopaedic Research Institute (AORI) type 3 bone defects, who underwent
revision using femoral head allografts and stemmed components. The
mean number of femoral heads used was 1.7 (1 to 3). The allograft–host
junctions were packed with cancellous autograft. At a mean follow-up of 76 months (38 to 136) the mean American
Knee Society knee score improved from 37.2 (17 to 60) pre-operatively
to 90 (83 to 100) (p <
0.001). The mean function score improved
from 26.5 (0 to 50) pre-operatively to 81 (60 to 100) (p <
0.001).
All the grafts healed to the host bone. The mean time to healing
of the graft was 6.6 months
(4 to 16). There have been no complications of collapse of the graft,
nonunion, infection or implant loosening. No revision surgery was
required. The use of femoral head allografts in conjunction with a stemmed
component and autogenous bone graft in revision TKR in patients
with uncontained bone defects resulted in a high rate of healing
of the graft with minimal complications and a satisfactory outcome.
Longer follow-up is needed to observe the evolution of the graft. Cite this article:
The optimum cementing technique for the tibial
component in cemented primary total knee replacement (TKR) remains
controversial. The technique of cementing, the volume of cement
and the penetration are largely dependent on the operator, and hence
large variations can occur. Clinical, experimental and computational
studies have been performed, with conflicting results. Early implant
migration is an indication of loosening. Aseptic loosening is the
most common cause of failure in primary TKR and is the product of
several factors. Sufficient penetration of cement has been shown
to increase implant stability. This review discusses the relevant literature regarding all aspects
of the cementing of the tibial component at primary TKR. Cite this article:
This was a retrospective analysis of the medium-
to long-term results of 46 TC3 Sigma revision total knee replacements
using long uncemented stems in press-fit mode. Clinical and radiological analysis took place pre-operatively,
at two years post-operatively, and at a mean follow-up of 8.5 years
(4 to 12). The mean pre-operative International Knee Society (IKS)
clinical score was 42 points (0 to 74), improving to 83.7 (52 to
100) by the final follow-up. The mean IKS score for function improved
from 34.3 points (0 to 80) to 64.2 (15 to 100) at the final follow-up.
At the final follow-up 30 knees (65.2%) had an excellent result, seven
(15.2%) a good result, one (2.2%) a medium and eight (17.4%) a poor
result. There were two failures, one with anteroposterior instability
and one with aseptic loosening. The TC3 revision knee system, when used with press-fit for long
intramedullary stems and cemented femoral and tibial components,
in both septic and aseptic revisions, results in a satisfactory
clinical and radiological outcome, and has a good medium- to long-term
survival rate.
Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray. We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement. Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.