Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives

This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling.

Methods

A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group.


Bone & Joint Research
Vol. 2, Issue 2 | Pages 41 - 50
1 Feb 2013
Cottrell JA Keshav V Mitchell A O’Connor JP

Objectives

Recent studies have shown that modulating inflammation-related lipid signalling after a bone fracture can accelerate healing in animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity during fracture healing increases cyclooxygenase-2 (COX-2) expression in the fracture callus, accelerates chondrogenesis and decreases healing time. In this study, we test the hypothesis that 5-LO inhibition will increase direct osteogenesis.

Methods

Bilateral, unicortical femoral defects were used in rats to measure the effects of local 5-LO inhibition on direct osteogenesis. The defect sites were filled with a polycaprolactone (PCL) scaffold containing 5-LO inhibitor (A-79175) at three dose levels, scaffold with drug carrier, or scaffold only. Drug release was assessed in vitro. Osteogenesis was assessed by micro-CT and histology at two endpoints of ten and 30 days.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 127 - 129
1 Jan 2007
Tang TT Lu B Yue B Xie XH Xie YZ Dai KR Lu JX Lou JR

The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats.

Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group.

Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 960 - 966
1 Jul 2006
Pluhar GE Turner AS Pierce AR Toth CA Wheeler DL

Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p > 0.05), yet material properties were inferior (p < 0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1539 - 1544
1 Nov 2007
Hibino N Hamada Y Sairyo K Yukata K Sano T Yasui N

This study was undertaken to elucidate the mechanism of biological repair at the tendon-bone junction in a rat model. The stump of the toe flexor tendon was sutured to a drilled hole in the tibia (tendon suture group, n = 23) to investigate healing of the tendon-bone junction both radiologically and histologically. Radiological and histological findings were compared with those observed in a sham control group where the bone alone was drilled (n = 19). The biomechanical strength of the repaired junction was confirmed by pull-out testing six weeks after surgery in four rats in the tendon suture group. Callus formation was observed at the site of repair in the tendon suture group, whereas in the sham group callus formation was minimal. During the pull-out test, the repaired tendon-bone junction did not fail because the musculotendinous junction always disrupted first.

In order to understand the factors that influenced callus formation at the site of repair, four further groups were evaluated. The nature of the sutured tendon itself was investigated by analysing healing of a tendon stump after necrosis had been induced with liquid nitrogen in 16 cases. A proximal suture group (n = 16) and a partial tenotomy group (n = 16) were prepared to investigate the effects of biomechanical loading on the site of repair. Finally, a group where the periosteum had been excised at the site of repair (n = 16) was examined to study the role of the periosteum. These four groups showed less callus formation radiologically and histologically than did the tendon suture group.

In conclusion, the sutured tendon-bone junction healed and achieved mechanical strength at six weeks after suturing, showing good local callus formation. The viability of the tendon stump, mechanical loading and intact periosteum were all found to be important factors for better callus formation at a repaired tendon-bone junction.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 246 - 253
1 Feb 2008
Coathup M Smith N Kingsley C Buckland T Dattani R Ascroft GP Blunn G

An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p > 0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p < 0.05). The results for the area of new bone formation demonstrated no significant differences (p > 0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p > 0.05) and percentage ApaPore-bone contact (p > 0.05).

The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 879 - 883
1 Jun 2005
Diab M Poston JM Huber P Tencer AF

Repeated trauma to the radial head may be one of the causative factors in the genesis of osteochondritis dissecans of the capitellum. We measured the force, contact area and pressure across the radiocapitellar articulation of the elbow before and after radial shortening osteotomy in five fresh-frozen cadaver upper limbs with loads of 45, 90 and 135 N, respectively. Measurements were made on pressure-sensitive film placed in the radiocapitellar articulation with the forearm in the supinated, neutral and pronated positions before and after radial shortening. Radial shortening significantly reduced the mean force and contact area across the radiocapitellar articulation in all positions of the forearm.