Antegrade nailing of proximal humeral fractures
using a straight nail can damage the bony insertion of the supraspinatus
tendon and may lead to varus failure of the construct. In order
to establish the ideal anatomical landmarks for insertion of the
nail and their clinical relevance we analysed CT scans of bilateral
proximal humeri in 200 patients (mean age 45.1 years ( We therefore emphasise the need for ‘fastidious’ pre-operative
planning to minimise this risk. Cite this article:
In Neer type II (Robinson type 3B) fractures
of the distal clavicle the medial fragment is detached from the coracoclavicular
ligaments and displaced upwards, whereas the lateral fragment, which
is usually small, maintains its position. Several fixation techniques
have been suggested to treat this fracture. The aim of this study
was to assess the outcome of patients with type II distal clavicle
fractures treated with coracoclavicular suture fixation using three
loops of Ethibond. This prospective study included 14 patients with
Neer type II fractures treated with open reduction and coracoclavicular
fixation. Ethibond sutures were passed under the coracoid and around
the clavicle (UCAC loop) without making any drill holes in the proximal
or distal fragments. There were 11 men and three women with a mean
age of 34.57 years (29 to 41). Patients were followed for a mean
of 24.64 months (14 to 31) and evaluated radiologically and clinically
using the Constant score. Fracture union was obtained in 13 patients at
a mean of 18.23 weeks (13 to 23) and the mean Constant score was
96.07 (91 to 100). One patient developed an asymptomatic fibrous
nonunion at one year. This study suggests that open reduction and
internal fixation of unstable distal clavicle fractures using UCAC
loops can provide rigid fixation and lead to bony union. This technique avoids
using metal hardware, preserves the acromioclavicular joint and
provides adequate stability with excellent results. Cite this article:
The objective of this study was to determine if a synthetic bone
substitute would provide results similar to bone from osteoporotic
femoral heads during Pushout studies were performed with the dynamic hip screw (DHS)
and the DHS Blade in both cadaveric femoral heads and artificial
bone substitutes in the form of polyurethane foam blocks of different
density. The pushout studies were performed as a means of comparing
the force displacement curves produced by each implant within each
material.Introduction
Methods