Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 241 - 245
1 Mar 2019
Leaver T Johnson B Lampard J Aarvold A Uglow M

Aims. The aim of this study was to quantify the risk of developing cancer from the exposure to radiation associated with surgery to correct limb deformities in children. Patients and Methods. A total of 35 children were studied. There were 19 girls and 16 boys. Their mean age was 11.9 years (2 to 18) at the time of surgery. Details of the radiological examinations were recorded during gradual correction using a Taylor Spatial Frame. The dose area product for each radiograph was obtained from the Computerised Radiology Information System database. The effective dose in millisieverts (mSv) was calculated using conversion coefficients for the anatomical area. The lifetime risk of developing cancer was calculated using government-approved Health Protection Agency reports, accounting for the age and gender of the child. Results. Correction was undertaken in five femurs, 18 tibiae, and 12 feet. The median duration of treatment was 45 months (11 to 118). The mean effective dose was 0.31 mSv (0.05 to 0.64) for the femur, 0.29 mSv (0.01 to 0.97) for the tibia, and 0.027 mSv (0.001 to 0.161) for the foot. The cumulative exposure gave ‘negligible’ risk in 26 children and ‘minimal’ risk in nine children, according to Public Health England categories. These results are below the mean annual background radiation in the United Kingdom. Conclusion. The lifetime attributable risk of developing cancer from repeated exposure to radiation was negligible or minimal in all children. This is the first study to quantify the exposure to radiation from serial radiographs in children with limb deformities who are treated surgically using circular external fixation, linking this to the risk of developing cancer. Cite this article: Bone Joint J 2019;101-B:241–245


Bone & Joint Open
Vol. 1, Issue 6 | Pages 222 - 228
9 Jun 2020
Liow MHL Tay KXK Yeo NEM Tay DKJ Goh SK Koh JSB Howe TS Tan AHC

The coronavirus disease 2019 (COVID-19) pandemic has led to unprecedented challenges to healthcare systems worldwide. Orthopaedic departments have adopted business continuity models and guidelines for essential and non-essential surgeries to preserve hospital resources as well as protect patients and staff. These guidelines broadly encompass reduction of ambulatory care with a move towards telemedicine, redeployment of orthopaedic surgeons/residents to the frontline battle against COVID-19, continuation of education and research through web-based means, and cancellation of non-essential elective procedures. However, if containment of COVID-19 community spread is achieved, resumption of elective orthopaedic procedures and transition plans to return to normalcy must be considered for orthopaedic departments. The COVID-19 pandemic also presents a moral dilemma to the orthopaedic surgeon considering elective procedures. What is the best treatment for our patients and how does the fear of COVID-19 influence the risk-benefit discussion during a pandemic? Surgeons must deliberate the fine balance between elective surgery for a patient’s wellbeing versus risks to the operating team and utilization of precious hospital resources. Attrition of healthcare workers or Orthopaedic surgeons from restarting elective procedures prematurely or in an unsafe manner may render us ill-equipped to handle the second wave of infections. This highlights the need to develop effective screening protocols or preoperative COVID-19 testing before elective procedures in high-risk, elderly individuals with comorbidities. Alternatively, high-risk individuals should be postponed until the risk of nosocomial COVID-19 infection is minimal. In addition, given the higher mortality and perioperative morbidity of patients with COVID-19 undergoing surgery, the decision to operate must be carefully deliberated. As we ramp-up elective services and get “back to business” as orthopaedic surgeons, we have to be constantly mindful to proceed in a cautious and calibrated fashion, delivering the best care, while maintaining utmost vigilance to prevent the resurgence of COVID-19 during this critical transition period.

Cite this article: Bone Joint Open 2020;1-6:222–228.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 171 - 174
1 Feb 2017
Tissingh EK Sudlow A Jones A Nolan JF

Aims

The importance of accurate identification and reporting of surgical site infection (SSI) is well recognised but poorly defined. Public Health England (PHE) mandated collection of orthopaedic SSI data in 2004. Data submission is required in one of four categories (hip prosthesis, knee prosthesis, repair of neck of femur, reduction of long bone fracture) for one quarter per year. Trusts are encouraged to carry out post-discharge surveillance but this is not mandatory. Recent papers in the orthopaedic literature have highlighted the importance of SSI surveillance and the heterogeneity of surveillance methods. However, details of current orthopaedic SSI surveillance practice has not been described or quantified.

Patients and Methods

All 147 NHS trusts in England were audited using a structured questionnaire. Data was collected in the following categories: data collection; data submission to PHE; definitions used; resource constraints; post-discharge surveillance and SSI rates in the four PHE categories. The response rate was 87.7%.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 4 | Pages 441 - 445
1 Apr 2012
Chou DTS Achan P Ramachandran M

The World Health Organization (WHO) launched the first Global Patient Safety Challenge in 2005 and introduced the ‘5 moments of hand hygiene’ in 2009 in an attempt to reduce the burden of health care associated infections. Many NHS trusts in England adopted this model of hand hygiene, which prompts health care workers to clean their hands at five distinct stages of caring for the patient. Our review analyses the scientific foundation for the five moments of hand hygiene and explores the evidence, as referenced by WHO, to support these recommendations. We found no strong scientific support for this regime of hand hygiene as a means of reducing health care associated infections. Consensus-based guidelines based on weak scientific foundations should be assessed carefully to prevent shifting the clinical focus from more important issues and to direct limited resources more effectively.

We recommend caution in the universal adoption of the WHO ‘5 moments of hand hygiene’ by orthopaedic surgeons and other health care workers and emphasise the need for evidence-based principles when adopting hospital guidelines aimed at promoting excellence in clinical practice.