Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 5, Issue 3 | Pages 218 - 226
15 Mar 2024
Voigt JD Potter BK Souza J Forsberg J Melton D Hsu JR Wilke B

Aims. Prior cost-effectiveness analyses on osseointegrated prosthesis for transfemoral unilateral amputees have analyzed outcomes in non-USA countries using generic quality of life instruments, which may not be appropriate when evaluating disease-specific quality of life. These prior analyses have also focused only on patients who had failed a socket-based prosthesis. The aim of the current study is to use a disease-specific quality of life instrument, which can more accurately reflect a patient’s quality of life with this condition in order to evaluate cost-effectiveness, examining both treatment-naïve and socket refractory patients. Methods. Lifetime Markov models were developed evaluating active healthy middle-aged male amputees. Costs of the prostheses, associated complications, use/non-use, and annual costs of arthroplasty parts and service for both a socket and osseointegrated (OPRA) prosthesis were included. Effectiveness was evaluated using the questionnaire for persons with a transfemoral amputation (Q-TFA) until death. All costs and Q-TFA were discounted at 3% annually. Sensitivity analyses on those cost variables which affected a change in treatment (OPRA to socket, or socket to OPRA) were evaluated to determine threshold values. Incremental cost-effectiveness ratios (ICERs) were calculated. Results. For treatment-naïve patients, the lifetime ICER for OPRA was $279/quality-adjusted life-year (QALY). For treatment-refractory patients the ICER was $273/QALY. In sensitivity analysis, the variable thresholds that would affect a change in the course of treatment based on cost (from socket to OPRA), included the following for the treatment-naïve group: yearly replacement components for socket > $8,511; cost yearly replacement parts OPRA < $1,758; and for treatment-refractory group: yearly replacement component for socket of > $12,467. Conclusion. The use of the OPRA prosthesis in physically active transfemoral amputees should be considered as a cost-effective alternative in both treatment-naïve and treatment-refractory socket prosthesis patients. Disease-specific quality of life assessments such as Q-TFA are more sensitive when evaluating cost-effectiveness. Cite this article: Bone Jt Open 2024;5(3):218–226


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 527 - 534
1 Apr 2018
Hansson E Hagberg K Cawson M Brodtkorb TH

Aims

The aim of this study was to compare the cost-effectiveness of treatment with an osseointegrated percutaneous (OI-) prosthesis and a socket-suspended (S-) prosthesis for patients with a transfemoral amputation.

Patients and Methods

A Markov model was developed to estimate the medical costs and changes in quality-adjusted life-years (QALYs) attributable to treatment of unilateral transfemoral amputation over a projected period of 20 years from a healthcare perspective. Data were collected alongside a prospective clinical study of 51 patients followed for two years.


The Bone & Joint Journal
Vol. 102-B, Issue 1 | Pages 55 - 63
1 Jan 2020
Hagberg K Ghassemi Jahani S Kulbacka-Ortiz K Thomsen P Malchau H Reinholdt C

Aims

The aim of this study was to describe implant and patient-reported outcome in patients with a unilateral transfemoral amputation (TFA) treated with a bone-anchored, transcutaneous prosthesis.

Methods

In this cohort study, all patients with a unilateral TFA treated with the Osseointegrated Prostheses for the Rehabilitation of Amputees (OPRA) implant system in Sahlgrenska University Hospital, Gothenburg, Sweden, between January 1999 and December 2017 were included. The cohort comprised 111 patients (78 male (70%)), with a mean age 45 years (17 to 70). The main reason for amputation was trauma in 75 (68%) and tumours in 23 (21%). Patients answered the Questionnaire for Persons with Transfemoral Amputation (Q-TFA) before treatment and at two, five, seven, ten, and 15 years’ follow-up. A prosthetic activity grade was assigned to each patient at each timepoint. All mechanical complications, defined as fracture, bending, or wear to any part of the implant system resulting in removal or change, were recorded.