Aims. The aim of this study was to compare the
Aims. Early implant migration measured with radiostereometric analysis (RSA) has been proposed as a useful predictor of long-term fixation of tibial components in total knee arthroplasty. Evaluation of actual long-term fixation is of interest for cemented components, as well as for cementless fixation, which may offer long-term advantages once osseointegration has occurred. The objective of this study was to compare the long-term
Aims. The objective of this study was to compare the two-year
Aims. The primary objective of this study was to compare the five-year tibial component migration and wear between highly crosslinked polyethylene (HXLPE) inserts and conventional polyethylene (PE) inserts of the uncemented Triathlon fixed insert cruciate-retaining total knee arthroplasty (TKA). Secondary objectives included clinical outcomes and patient-reported outcome measures (PROMs). Methods. A double-blinded, randomized study was conducted including 96 TKAs. Tibial component migration and insert wear were measured with radiostereometric analysis (RSA) at three, six, 12, 24, and 60 months postoperatively. PROMS were collected preoperatively and at all follow-up timepoints. Results. There was no clinically relevant difference in terms of tibial component migration, insert wear, and PROMs between the HXLPE and PE groups. The mean difference in tibial component migration (maximal total point
Aims. Thresholds of acceptable early
Aims. Medial pivot (MP) total knee arthroplasties (TKAs) were designed to mimic native knee kinematics with their deep medial congruent fitting of the tibia to the femur almost like a ball-on-socket, and a flat lateral part. GMK Sphere is a novel MP implant. Our primary aim was to study the
Aims. The primary aim of this study was to compare the
Aims. The primary objective of this study was to compare
Aims. Proliferation,
Aims. Although bone cement is the primary mode of fixation in total knee arthroplasty (TKA), cementless fixation is gaining interest as it has the potential of achieving lasting biological fixation. By 3D printing an implant, highly porous structures can be manufactured, promoting osseointegration into the implant to prevent aseptic loosening. This study compares the
Aims. Hydroxyapatite coatings for uncemented fixation in total knee
arthroplasty can theoretically provide a long-lasting biological
interface with the host bone. The objective of this study was to
test this hypothesis with propriety hydroxyapatite, peri-apatite,
coated tibial components using component migration measured with radiostereometric
analysis over two years as an indicator of long-term fixation. Patients and Methods. A total of 29 patients at two centres received uncemented PA-coated
tibial components and were followed for two years with radiostereometric
analysis exams to quantify the
Aims. Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement. Patients and Methods. A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (. sd. 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (. sd. 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group. Results. There was no difference over two years in longitudinal
Aims. The purpose of the present study was to examine the long-term
fixation of a cemented fixed-bearing polished titanium tibial baseplate
(Genesis ll). . Patients and Methods. Patients enrolled in a previous two-year prospective trial (n
= 35) were recalled at ten years. Available patients (n = 15) underwent
radiostereometric analysis (RSA) imaging in a supine position using
a conventional RSA protocol.
Accurate quantitative measurements of micromovement immediately after operation would be a reliable indicator of the stability of an individual component. We have therefore developed a system for measuring micromovement of the tibial component using three non-contact displacement transducers attached to the tibial cortex during total knee arthroplasty (TKA). Using this system we measured the initial stability in 31 uncemented TKAs. All the tibial components were fixed by a stem and four screws. The initial stability was defined as the amount of displacement when a load of 20 kg was applied. The mean subsidence was 60.7 μm and the mean lift-off was 103.3 μm. We also studied the
Aims. Conflicting clinical results are reported for the ATTUNE Total Knee Arthroplasty (TKA). This randomized controlled trial (RCT) evaluated five-year follow-up results comparing cemented ATTUNE and PFC-Sigma cruciate retaining TKAs, analyzing component migration as measured by radiostereometric analysis (RSA), clinical outcomes, patient-reported outcome measures (PROMs), and radiological outcomes. Methods. A total of 74 primary TKAs were included in this single-blind RCT. RSA examinations were performed, and PROMs and clinical outcomes were collected immediate postoperatively, and at three, six, 12, 24, and 60 months’ follow-up. Radiolucent lines (RLLs) were measured in standard anteroposterior radiographs at six weeks, and 12 and 60 months postoperatively. Results. At five-year follow-up, RSA data from 61 patients were available and the mean maximum total point motion (MTPM) of the femoral components were: ATTUNE: 0.96 mm (95% confidence interval (CI) 0.79 to 1.14) and PFC-Sigma 1.37 mm (95% CI 1.18 to 1.59) (p < 0.001). The PFC-Sigma femoral component migrated more in the first postoperative year, but stabilized thereafter. MPTM of the tibial components were comparable at five-year follow-up: ATTUNE 1.12 mm (95% CI 0.95 to 1.31) and PFC-Sigma 1.25 mm (95% CI 1.07 to 1.44) (p = 0.438). RLL at the medial tibial implant-cement interface remained more prevalent for the ATTUNE at five-year follow-up compared to the PFC-Sigma (20% vs 3%). RLL did not progress over time, and varied between patients at different timepoints for both TKA systems. Clinical outcomes and PROMs improved compared with preoperative scores, and were not different between groups. Conclusion. MTPM
Aims. The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). Methods. A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years. Results. The BCR-TKA demonstrated a kinematic pattern comparable to the natural knee’s screw-home mechanism in the step-up task. In the lunge task, the medial CP of the BCR-TKA was more anterior in the early flexion phase, while laterally the CP was more posterior during the entire movement cycle. The BCR-TKA group showed higher tibial
Aims. Micromotion of the polyethylene (PE) inlay may contribute to backside PE wear in addition to articulate wear of total knee arthroplasty (TKA). Using radiostereometric analysis (RSA) with tantalum beads in the PE inlay, we evaluated PE micromotion and its relationship to PE wear. Methods. A total of 23 patients with a mean age of 83 years (77 to 91), were available from a RSA study on cemented TKA with Maxim tibial components (Zimmer Biomet). PE inlay
Aims. A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Methods. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess
Aims. Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell
Aims. Our intention was to investigate if the highly porous biological fixation surfaces of a new 3D-printed total knee arthroplasty (TKA) achieved adequate fixation of the tibial and patellar components to the underlying bone. Patients and Methods. A total of 29 patients undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate and metal-backed patella. Patient-reported outcomes measures were recorded and implant migration was assessed using radiostereometric analysis. Results. Patient function significantly improved by three months postoperatively (p < 0.001). Mean difference in maximum total point motion between 12 and 24 months was 0.021 mm (-0.265 to 0.572) for the tibial implant and 0.089 mm (-0.337 to 0.758) for the patellar implant. The rate of tibial and patellar