A delay in establishing the diagnosis of an occult
fracture of the hip that remains unrecognised after plain radiography
can result in more complex treatment such as an arthroplasty being
required. This might be avoided by earlier diagnosis using MRI.
The aim of this study was to investigate the best MR imaging sequence
for diagnosing such fractures. From a consecutive cohort of 771
patients admitted between 2003 and 2011 with a clinically suspected
fracture of the hip, we retrospectively reviewed the MRI scans of
the 35 patients who had no evidence of a fracture on their plain
radiographs. In eight of these patients MR scanning excluded a fracture
but the remaining 27 patients had an abnormal scan: one with a fracture
of the pubic ramus, and in the other 26 a T1-weighted
coronal MRI showed a hip fracture with 100% sensitivity. T2-weighted
imaging was undertaken in 25 patients, in whom the diagnosis could
not be established with this scanning sequence alone, giving a sensitivity
of 84.0% for T2-weighted imaging. If there is a clinical suspicion of a hip fracture with normal
radiographs, T1-weighted coronal MRI is the best sequence
of images for identifying a fracture.
It has previously been suggested that among unstable
ankle fractures, the presence of a malleolar fracture is associated
with a worse outcome than a corresponding ligamentous injury. However,
previous studies have included heterogeneous groups of injury. The
purpose of this study was to determine whether any specific pattern of
bony and/or ligamentous injury among a series of supination-external
rotation type IV (SER IV) ankle fractures treated with anatomical
fixation was associated with a worse outcome. We analysed a prospective cohort of 108 SER IV ankle fractures
with a follow-up of one year. Pre-operative radiographs and MRIs
were undertaken to characterise precisely the pattern of injury.
Operative treatment included fixation of all malleolar fractures.
Post-operative CT was used to assess reduction. The primary and
secondary outcome measures were the Foot and Ankle Outcome Score
(FAOS) and the range of movement of the ankle. There were no clinically relevant differences between the four
possible SER IV fracture pattern groups with regard to the FAOS
or range of movement. In this population of strictly defined SER
IV ankle injuries, the presence of a malleolar fracture was not
associated with a significantly worse clinical outcome than its
ligamentous injury counterpart. Other factors inherent to the injury
and treatment may play a more important role in predicting outcome.
A prospective study was performed to develop
a clinical prediction rule that incorporated demographic and clinical factors
predictive of a fracture of the scaphoid. Of 260 consecutive patients
with a clinically suspected or radiologically confirmed scaphoid
fracture, 223 returned for evaluation two weeks after injury and
formed the basis of our analysis. Patients were evaluated within
72 hours of injury and at approximately two and six weeks after injury
using clinical assessment and standard radiographs. Demographic
data and the results of seven specific tests in the clinical examination
were recorded. There were 116 (52%) men and their mean age was 33 years (13
to 95; Our study has demonstrated that clinical prediction rules have
a considerable influence on the probability of a suspected scaphoid
fracture. This will help improve the use of supplementary investigations
where the diagnosis remains in doubt.