header advert
Results 1 - 20 of 38
Results per page:
Bone & Joint Research
Vol. 2, Issue 1 | Pages 9 - 17
1 Jan 2013
Xia Y

This review briefly summarises some of the definitive studies of articular cartilage by microscopic MRI (µMRI) that were conducted with the highest spatial resolutions. The article has four major sections. The first section introduces the cartilage tissue, MRI and µMRI, and the concept of image contrast in MRI. The second section describes the characteristic profiles of three relaxation times (T. 1. , T. 2. and T. 1ρ. ) and self-diffusion in healthy articular cartilage. The third section discusses several factors that can influence the visualisation of articular cartilage and the detection of cartilage lesion by MRI and µMRI. These factors include image resolution, image analysis strategies, visualisation of the total tissue, topographical variations of the tissue properties, surface fibril ambiguity, deformation of the articular cartilage, and cartilage lesion. The final section justifies the values of multidisciplinary imaging that correlates MRI with other technical modalities, such as optical imaging. Rather than an exhaustive review to capture all activities in the literature, the studies cited in this review are merely illustrative


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 7 | Pages 1060 - 1066
1 Sep 2003
Henderson IJP Tuy B Connell D Oakes B Hettwer WH

In order to determine the usefulness of MRI in assessing autologous chondrocyte implantation (ACI) the first 57 patients (81 chondral lesions) with a 12-month review were evaluated clinically and with specialised MRI at three and 12 months. Improvement 12 months after operation was found subjectively (37.6 to 51.9) and in knee function levels (from 85% International Cartilage Repair Society (ICRS) III/IV to 61% I/II). The International Knee Documentation Committee (IKDC) scores showed an initial deterioration at three months (56% IKDC A/B) but marked improvement at 12 months (88% A/B). The MRI at three months showed 82% of patients with at least 50% defect fill, 59% with a normal or nearly normal signal at repair sites, 71% with a mild or no effusion and 80% with a mild or no underlying bone-marrow oedema. These improved at 12 months to 93%, 93%, 94% and 91%, respectively. The overall MR score at 12 months suggested production of normal or nearly normal cartilage in 82%, corresponding to a subjective improvement in 81% of patients and 88% IKDC A/B scores. Second-look surgery and biopsies in 15 patients (22 lesions) showed a moderate correlation of MRI with visual scoring; 70% of biopsies showed hyaline and hyaline-like cartilage. Thus, MRI at 12 months is a reasonable non-invasive means of assessment of ACI


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1199 - 1200
1 Nov 2000
Nakagawa S Kadoya Y Todo S Kobayashi A Sakamoto H Freeman MAR Yamano Y

We studied active flexion from 90° to 133° and passive flexion to 162° using MRI in 20 unloaded knees in Japanese subjects. Flexion over this arc is accompanied by backward movement of the medial femoral condyle of 4.0 mm and by backward movement laterally of 15 mm, i.e., by internal rotation of the tibia. At 162° the lateral femoral condyle lies posterior to the tibia


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1196 - 1198
1 Nov 2000
Hill PF Vedi V Williams A Iwaki H Pinskerova V Freeman MAR

In 13 unloaded living knees we confirmed the findings previously obtained in the unloaded cadaver knee during flexion and external rotation/internal rotation using MRI. In seven loaded living knees with the subjects squatting, the relative tibiofemoral movements were similar to those in the unloaded knee except that the medial femoral condyle tended to move about 4 mm forwards with flexion. Four of the seven loaded knees were studied during flexion in external and internal rotation. As predicted, flexion (squatting) with the tibia in external rotation suppressed the internal rotation of the tibia which had been observed during unloaded flexion


Bone & Joint Research
Vol. 3, Issue 4 | Pages 130 - 138
1 Apr 2014
Shapiro F Connolly S Zurakowski D Flynn E Jaramillo D

Objectives. An experimental piglet model induces avascular necrosis (AVN) and deformation of the femoral head but its secondary effects on the developing acetabulum have not been studied. The aim of this study was to assess the development of secondary acetabular deformation following femoral head ischemia. Methods. Intracapsular circumferential ligation at the base of the femoral neck and sectioning of the ligamentum teres were performed in three week old piglets. MRI was then used for qualitative and quantitative studies of the acetabula in operated and non-operated hips in eight piglets from 48 hours to eight weeks post-surgery. Specimen photographs and histological sections of the acetabula were done at the end of the study. . Results. The operated-side acetabula were wider, shallower and misshapen, with flattened labral edges. At eight weeks, increased acetabular cartilage thickness characterised the operated sides compared with non-operated sides (p < 0.001, ANOVA). The mean acetabular width on the operated side was increased (p = 0.015) while acetabular depth was decreased anteriorly (p = 0.007) and posteriorly (p = 0.44). The cartilage was thicker, with delayed acetabular bone formation, and showed increased vascularisation with fibrosis laterally and focal degenerative changes involving chondrocyte hypocellularity, chondrocyte cloning, peripheral pannus formation and surface fibrillation. . Conclusions. We demonstrate that femoral head AVN in the young growing piglet also induced, and was coupled with, secondary malformation in acetabular shape affecting both articular and adjacent pelvic cartilage structure, and acetabular bone. The femoral head model inducing AVN can also be applied to studies of acetabular maldevelopment, which is less well understood in terms of developing hip malformation. Cite this article: Bone Joint Res 2014;3:130–8


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 830 - 834
1 Jun 2009
Pinskerova V Samuelson KM Stammers J Maruthainar K Sosna A Freeman MAR

There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120° and 160° of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120° to 160° the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160° the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160° of flexion. Neither the events between 120° and 160° nor the anatomy at 160° could result from a continuation of the kinematics up to 120°. Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0° to 160°


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 11 | Pages 1533 - 1538
1 Nov 2006
Meyer DC Lajtai G von Rechenberg B Pfirrmann CWA Gerber C

We released the infraspinatus tendons of six sheep, allowed retraction of the musculotendinous unit over a period of 40 weeks and then performed a repair. We studied retraction of the musculotendinous unit 35 weeks later using CT, MRI and macroscopic dissection. The tendon was retracted by a mean of 4.7 cm (3.8 to 5.1) 40 weeks after release and remained at a mean of 4.2 cm (3.3 to 4.7) 35 weeks after the repair. Retraction of the muscle was only a mean of 2.7 cm (2.0 to 3.3) and 1.7 cm (1.1 to 2.2) respectively at these two points. Thus, the musculotendinous junction had shifted distally by a mean of 2.5 cm (2.0 to 2.8) relative to the tendon. Sheep muscle showed an ability to compensate for approximately 60% of the tendon retraction in a hitherto unknown fashion. Such retraction may not be a quantitatively reliable indicator of retraction of the muscle and may overestimate the need for elongation of the musculotendinous unit during repair


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 131 - 137
1 Jan 2009
Boraiah S Dyke JP Hettrich C Parker RJ Miller A Helfet D Lorich D

In spite of extensive accounts describing the blood supply to the femoral head, the prediction of avascular necrosis is elusive. Current opinion emphasises the contributions of the superior retinacular artery but may not explain the clinical outcome in many situations, including intramedullary nailing of the femur and resurfacing of the hip. We considered that significant additional contribution to the vascularity of the femoral head may exist. A total of 14 fresh-frozen hips were dissected and the medial circumflex femoral artery was cannulated in the femoral triangle. On the test side, this vessel was ligated, with the femoral head receiving its blood supply from the inferior vincular artery alone. Gadolinium contrast-enhanced MRI was then performed simultaneously on both control and test specimens. Polyurethane was injected, and gross dissection of the specimens was performed to confirm the extraosseous anatomy and the injection of contrast. The inferior vincular artery was found in every specimen and had a significant contribution to the vascularity of the femoral head. The head was divided into four quadrants: medial (0), superior (1), lateral (2) and inferior (3). In our study specimens the inferior vincular artery contributed a mean of 56% (25% to 90%) of blood flow in quadrant 0, 34% (14% to 80%) of quadrant 1, 37% (18% to 48%) of quadrant 2 and 68% (20% to 98%) in quadrant 3. Extensive intra-osseous anastomoses existed between the superior retinacular arteries, the inferior vincular artery and the subfoveal plexus


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 688 - 691
1 May 2006
van Huyssteen AL Hendrix MRG Barnett AJ Wakeley CJ Eldridge JDJ

Trochlear dysplasia is an important anatomical abnormality in symptomatic patellar instability. Our study assessed the mismatch between the bony and cartilaginous morphology in patients with a dysplastic trochlea compared with a control group. MRI scans of 25 knees in 23 patients with trochlear dysplasia and in 11 patients in a randomly selected control group were reviewed retrospectively in order to assess the morphology of the cartilaginous and bony trochlea. Inter- and intra-observer error was assessed. In the dysplastic group there were 15 women and eight men with a mean age of 20.4 years (14 to 30). The mean bony sulcus angle was 167.9° (141° to 203°), whereas the mean cartilaginous sulcus angle was 186.5° (152° to 214°; p < 0.001). In 74 of 75 axial images (98.7%) the cartilaginous contour was different from the osseous contour on subjective assessment, the cartilage exacerbated the abnormality. Our study shows that the morphology of the cartilaginous trochlea differs markedly from that of the underlying bony trochlea in patients with trochlear dysplasia. MRI is necessary in order to demonstrate the pathology and to facilitate surgical planning


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 592 - 599
1 May 2002
Maier M Milz S Tischer T Münzing W Manthey N Stäbler A Holzknecht N Weiler C Nerlich A Refior HJ Schmitz C

There is little information about the effects of extracorporeal shock-wave about application the effects (ESWA) of on normal bone physiology. We have therefore investigated the effects of ESWA on intact distal rabbit femora in vivo. The animals received 1500 shock-wave pulses each of different energy flux densities (EFD) on either the left or right femur or remained untreated. The effects were studied by bone scintigraphy, MRI and histopathological examination. Ten days after ESWA (0.5 mJ/mm. 2. and 0.9 mJ/mm. 2. EFD), local blood flow and bone metabolism were decreased, but were increased 28 days after ESWA (0.9 mJ/mm. 2. ). One day after ESWA with 0.9 mJ/mm. 2. EFD but not with 0.5 mJ/mm. 2. , there were signs of soft-tissue oedema, epiperiosteal fluid and bone-marrow oedema on MRI. In addition, deposits of haemosiderin were found epiperiosteally and within the marrow cavity ten days after ESWA. We conclude that ESWA with both 0.5 mJ/mm. 2. and 0.9 mJ/mm. 2. EFD affected the normal bone physiology in the distal rabbit femur. Considerable damaging side-effects were observed with 0.9 mJ/mm. 2. EFD on periosteal soft tissue and tissue within the bone-marrow cavity


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 607 - 613
1 May 2002
Martelli S Pinskerova V

We report a study of the shapes of the tibial and femoral articular surfaces in sagittal, frontal and coronal planes which was performed on cadaver knees using two techniques, MRI and computer interpolation of sections of the articular surfaces acquired by a three-dimensional digitiser. The findings using MRI, confirmed in a previous study by dissection, were the same as those using the digitiser. Thus both methods appear to be valid anatomical tools. The tibial and femoral articular surfaces can be divided into anterior segments, contacting from 0° to 20 ± 10° of flexion, and posterior segments, contacting from 20 ± 10° to 120° of flexion. The medial and lateral compartments are asymmetrical, particularly anteriorly. Posteromedially, the femur is spherical and is located in a conforming, but partly deficient, tibial socket. Posterolaterally, it is circular only in the sagittal section and the tibia is flat centrally, sloping downwards both anteriorly and posteriorly to receive the meniscal horns. Anteromedially, the femur is convex with a sagittal radius larger than that posteriorly, while the tibia is flat sloping upwards and forwards. Anterolaterally, both the femoral and tibial surfaces are largely deficient. These shapes suggest that medially the femur can rotate on the tibia through three axes intersecting in the middle of the femoral sphere, but that the sphere can only translate anteroposteriorly and even then to a limited extent. Laterally, the femur can freely translate anteroposteriorly, but can only rotate around a transverse axis for that part of the arc, i.e., near extension, during which it comes into contact with the tibia through its flattened distal/medial surface as against its spherical posterior surface


Bone & Joint 360
Vol. 7, Issue 5 | Pages 41 - 42
1 Oct 2018
Foy MA


Bone & Joint Research
Vol. 8, Issue 2 | Pages 101 - 106
1 Feb 2019
Filardo G Petretta M Cavallo C Roseti L Durante S Albisinni U Grigolo B

Objectives

Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology.

Methods

A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1201 - 1203
1 Nov 2000
Karrholm J Brandsson S Freeman MAR

We studied the knees of 11 volunteers using RSA during a step-up exercise requiring extension while weight-bearing from 50° to 0°. The findings on weight-bearing flexion with and without external rotation of the tibia based on MRI were confirmed


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 450 - 456
1 Apr 2004
Nakagawa S Johal P Pinskerova V Komatsu T Sosna A Williams A Freeman MAR

The posterior cruciate ligament (PCL) was imaged by MRI throughout flexion in neutral tibial rotation in six cadaver knees, which were also dissected, and in 20 unloaded and 13 loaded living (squatting) knees. The appearance of the ligament was the same in all three groups. In extension the ligament is curved concave-forwards. It is straight, fully out-to-length and approaching vertical from 60° to 120°, and curves convex-forwards over the roof of the intercondylar notch in full flexion. Throughout flexion the length of the ligament does not change, but the separations of its attachments do. We conclude that the PCL is not loaded in the unloaded cadaver knee and therefore, since its appearance in all three groups is the same, that it is also unloaded in the living knee during flexion. The posterior fibres may be an exception in hyperextension, probably being loaded either because of posterior femoral lift-off or because of the forward curvature of the PCL. These conclusions relate only to everyday life: none may be drawn with regard to more strenuous activities such as sport or in trauma


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1189 - 1195
1 Nov 2000
Iwaki H Pinskerova V Freeman MAR

In six unloaded cadaver knees we used MRI to determine the shapes of the articular surfaces and their relative movements. These were confirmed by dissection. Medially, the femoral condyle in sagittal section is composed of the arcs of two circles and that of the tibia of two angled flats. The anterior facets articulate in extension. At about 20° the femur ‘rocks’ to articulate through the posterior facets. The medial femoral condyle does not move anteroposteriorly with flexion to 110°. Laterally, the femoral condyle is composed entirely, or almost entirely, of a single circular facet similar in radius and arc to the posterior medial facet. The tibia is roughly flat. The femur tends to roll backwards with flexion. The combination during flexion of no antero-posterior movement medially (i.e., sliding) and backward rolling (combined with sliding) laterally equates to internal rotation of the tibia around a medial axis with flexion. About 5° of this rotation may be obligatory from 0° to 10° flexion; thereafter little rotation occurs to at least 45°. Total rotation at 110° is about 20°, most if not all of which can be suppressed by applying external rotation to the tibia at 90°


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 925 - 931
1 Aug 2004
Pinskerova V Johal P Nakagawa S Sosna A Williams A Gedroyc W Freeman MAR

MRI studies of the knee were performed at intervals between full extension and 120° of flexion in six cadavers and also non-weight-bearing and weight-bearing in five volunteers. At each interval sagittal images were obtained through both compartments on which the position of the femoral condyle, identified by the centre of its posterior circular surface which is termed the flexion facet centre (FFC), and the point of closest approximation between the femoral and tibial subchondral plates, the contact point (CP), were identified relative to the posterior tibial cortex. The movements of the CP and FFC were essentially the same in the three groups but in all three the medial differed from the lateral compartment and the movement of the FFC differed from that of the CP. Medially from 30° to 120° the FFC and CP coincided and did not move anteroposteriorly. From 30° to 0° the anteroposterior position of the FFC remained unchanged but the CP moved forwards by about 15 mm. Laterally, the FFC and the CP moved backwards together by about 15 mm from 20° to 120°. From 20° to full extension both the FFC and CP moved forwards, but the latter moved more than the former. The differences between the movements of the FFC and the CP could be explained by the sagittal shapes of the bones, especially anteriorly. The term ‘roll-back’ can be applied to solid bodies, e.g. the condyles, but not to areas. The lateral femoral condyle does roll-back with flexion but the medial does not, i.e. the femur rotates externally around a medial centre. By contrast, both the medial and lateral contact points move back, roughly in parallel, from 0° to 120° but they cannot ‘roll’. Femoral roll-back with flexion, usually imagined as backward rolling of both condyles, does not occur


Objectives

Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA.

Methods

We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.


Bone & Joint 360
Vol. 7, Issue 1 | Pages 38 - 39
1 Feb 2018
Das A


Bone & Joint Research
Vol. 7, Issue 2 | Pages 157 - 165
1 Feb 2018
Sun Y Kiraly AJ Sun AR Cox M Mauerhan DR Hanley EN

Objectives

The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01).

Methods

Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.