We evaluated the accuracy of augmented reality (AR)-based navigation assistance through simulation of bone tumours in a pig femur model. We developed an AR-based navigation system for bone tumour resection, which could be used on a tablet PC. To simulate a bone tumour in the pig femur, a cortical window was made in the diaphysis and bone cement was inserted. A total of 133 pig femurs were used and tumour resection was simulated with AR-assisted resection (164 resection in 82 femurs, half by an orthropaedic oncology expert and half by an orthopaedic resident) and resection with the conventional method (82 resection in 41 femurs). In the conventional group, resection was performed after measuring the distance from the edge of the condyle to the expected resection margin with a ruler as per routine clinical practice.Objectives
Methods
In spite of extensive accounts describing the blood supply to the femoral head, the prediction of avascular necrosis is elusive. Current opinion emphasises the contributions of the superior retinacular artery but may not explain the clinical outcome in many situations, including intramedullary nailing of the femur and resurfacing of the hip. We considered that significant additional contribution to the vascularity of the femoral head may exist. A total of 14 fresh-frozen hips were dissected and the medial circumflex femoral artery was cannulated in the femoral triangle. On the test side, this vessel was ligated, with the femoral head receiving its blood supply from the inferior vincular artery alone. Gadolinium contrast-enhanced MRI was then performed simultaneously on both control and test specimens. Polyurethane was injected, and gross dissection of the specimens was performed to confirm the extraosseous anatomy and the injection of contrast. The inferior vincular artery was found in every specimen and had a significant contribution to the vascularity of the femoral head. The head was divided into four quadrants: medial (0), superior (1), lateral (2) and inferior (3). In our study specimens the inferior vincular artery contributed a mean of 56% (25% to 90%) of blood flow in quadrant 0, 34% (14% to 80%) of quadrant 1, 37% (18% to 48%) of quadrant 2 and 68% (20% to 98%) in quadrant 3. Extensive intra-osseous anastomoses existed between the superior retinacular arteries, the inferior vincular artery and the subfoveal plexus.
The aim of this study was to establish a classification system for the acromioclavicular joint using cadaveric dissection and radiological analyses of both reformatted computed tomographic scans and conventional radiographs centred on the joint. This classification should be useful for planning arthroscopic procedures or introducing a needle and in prospective studies of biomechanical stresses across the joint which may be associated with the development of joint pathology. We have demonstrated three main three-dimensional morphological groups namely flat, oblique and curved, on both cadaveric examination and radiological assessment. These groups were recognised in both the coronal and axial planes and were independent of age.
We released the infraspinatus tendons of six sheep, allowed retraction of the musculotendinous unit over a period of 40 weeks and then performed a repair. We studied retraction of the musculotendinous unit 35 weeks later using CT, MRI and macroscopic dissection. The tendon was retracted by a mean of 4.7 cm (3.8 to 5.1) 40 weeks after release and remained at a mean of 4.2 cm (3.3 to 4.7) 35 weeks after the repair. Retraction of the muscle was only a mean of 2.7 cm (2.0 to 3.3) and 1.7 cm (1.1 to 2.2) respectively at these two points. Thus, the musculotendinous junction had shifted distally by a mean of 2.5 cm (2.0 to 2.8) relative to the tendon. Sheep muscle showed an ability to compensate for approximately 60% of the tendon retraction in a hitherto unknown fashion. Such retraction may not be a quantitatively reliable indicator of retraction of the muscle and may overestimate the need for elongation of the musculotendinous unit during repair.