The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy.Aims
Methods
The outcome following the development of neurological complications after corrective surgery for scoliosis varies from full recovery to a permanent deficit. This study aimed to assess the prognosis and recovery of major neurological deficits in these patients, and to determine the risk factors for non-recovery, at a minimum follow-up of two years. A major neurological deficit was identified in 65 of 8,870 patients who underwent corrective surgery for scoliosis, including eight with complete paraplegia and 57 with incomplete paraplegia. There were 23 male and 42 female patients. Their mean age was 25.0 years (SD 16.3). The aetiology of the scoliosis was idiopathic (n = 6), congenital (n = 23), neuromuscular (n = 11), neurofibromatosis type 1 (n = 6), and others (n = 19). Neurological function was determined by the American Spinal Injury Association (ASIA) impairment scale at a mean follow-up of 45.4 months (SD 17.2). the patients were divided into those with recovery and those with no recovery according to the ASIA scale during follow-up.Aims
Methods
Minimally invasive transforaminal lumbar interbody fusion (MITLIF)
has been well validated in overweight and obese patients who are
consequently subject to a higher radiation exposure. This prospective
multicentre study aimed to investigate the efficacy of a novel lumbar
localisation system for MITLIF in overweight patients. The initial study group consisted of 175 patients. After excluding
49 patients for various reasons, 126 patients were divided into
two groups. Those in Group A were treated using the localisation
system while those in Group B were treated by conventional means.
The primary outcomes were the effective radiation dosage to the
surgeon and the exposure time.Aims
Patients and Methods
Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired Objectives
Materials and Methods
We reviewed the outcome of a retrospective case series of eight patients with atlantoaxial instability who had been treated by percutaneous anterior transarticular screw fixation and grafting under image-intensifier guidance between December 2005 and June 2008. The mean follow-up was 19 months (8 to 27). All eight patients had a solid C1–2 fusion. There were no breakages or displacement of screws. All the patients with pre-operative neck pain had immediate relief from their symptoms or considerable improvement. There were no major complications. Our preliminary clinical results suggest that percutaneous anterior transarticulation screw fixation is technically feasible, safe, useful and minimally invasive when using the appropriate instruments allied to intra-operative image intensification, and by selecting the correct puncture point, angle and depth of insertion.
The aim of this study was to evaluate the feasibility
of using the intact S1 nerve root as a donor nerve to repair an avulsion
of the contralateral lumbosacral plexus. Two cohorts of patients
were recruited. In cohort 1, the L4–S4 nerve roots of 15 patients
with a unilateral fracture of the sacrum and sacral nerve injury
were stimulated during surgery to establish the precise functional
distribution of the S1 nerve root and its proportional contribution
to individual muscles. In cohort 2, the contralateral uninjured
S1 nerve root of six patients with a unilateral lumbosacral plexus
avulsion was transected extradurally and used with a 25 cm segment
of the common peroneal nerve from the injured leg to reconstruct
the avulsed plexus. The results from cohort 1 showed that the innervation of S1 in
each muscle can be compensated for by L4, L5, S2 and S3. Numbness
in the toes and a reduction in strength were found after surgery
in cohort 2, but these symptoms gradually disappeared and strength
recovered. The results of electrophysiological studies of the donor
limb were generally normal. Severing the S1 nerve root does not appear to damage the healthy
limb as far as clinical assessment and electrophysiological testing
can determine. Consequently, the S1 nerve can be considered to be
a suitable donor nerve for reconstruction of an avulsed contralateral
lumbosacral plexus. Cite this article:
Previous studies on the anatomy of the lumbar spine have not clarified the precise relationship of the origin of the lumbar roots to their corresponding discs or their angulation to the dural sac. We studied 33 cadavers (25 formalin-preserved and eight fresh-frozen) and their radiographs to determine these details. All cadavers showed a gradual decrease in the angle of the nerve root from L1 to S1. The origin of the root was found to be below the corresponding disc for the L1 to L4 roots. In the formalin-preserved cadavers 8% of the L5 roots originated above, 64% below and 28% at the L4/L5 disc. In the fresh cadavers the values were 12.5%, 62.5% and 25%, respectively. For the S1 root 76% originated above and 24% at the L5-S1 disc in the formalin-preserved cadavers and 75% and 25%, respectively, in the fresh cadavers. A herniated disc usually compresses the root before division of the root sleeve. Thus, compression of the thecal sac before the origin of the root sleeve is common for L1 to L5 whereas compression at the root sleeve is common for S1. Our findings are of value in understanding the pathophysiology of prolapse of the disc and in preventing complications during surgery.
The purpose of this study was to determine whether
it would be feasible to use oblique lumbar interbody fixation for
patients with degenerative lumbar disease who required a fusion
but did not have a spondylolisthesis. A series of CT digital images from 60 patients with abdominal
disease were reconstructed in three dimensions (3D) using Mimics
v10.01: a digital cylinder was superimposed on the reconstructed
image to simulate the position of an interbody screw. The optimal
entry point of the screw and measurements of its trajectory were
recorded. Next, 26 cadaveric specimens were subjected to oblique
lumbar interbody fixation on the basis of the measurements derived
from the imaging studies. These were then compared with measurements
derived directly from the cadaveric vertebrae. Our study suggested that it is easy to insert the screws for
L1/2, L2/3 and L3/4 fixation: there was no significant difference
in measurements between those of the 3-D digital images and the
cadaveric specimens. For L4/5 fixation, part of L5 inferior articular
process had to be removed to achieve the optimal trajectory of the
screw. For L5/S1 fixation, the screw heads were blocked by iliac
bone: consequently, the interior oblique angle of the cadaveric specimens
was less than that seen in the 3D digital images. We suggest that CT scans should be carried out pre-operatively
if this procedure is to be adopted in clinical practice. This will
assist in determining the feasibility of the procedure and will
provide accurate information to assist introduction of the screws. Cite this article: