Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
Bone & Joint Research
Vol. 3, Issue 9 | Pages 280 - 288
1 Sep 2014
Shimomura K Kanamoto T Kita K Akamine Y Nakamura N Mae T Yoshikawa H Nakata K

Objective. Excessive mechanical stress on synovial joints causes osteoarthritis (OA) and results in the production of prostaglandin E2 (PGE2), a key molecule in arthritis, by synovial fibroblasts. However, the relationship between arthritis-related molecules and mechanical stress is still unclear. The purpose of this study was to examine the synovial fibroblast response to cyclic mechanical stress using an in vitro osteoarthritis model. Method. Human synovial fibroblasts were cultured on collagen scaffolds to produce three-dimensional constructs. A cyclic compressive loading of 40 kPa at 0.5 Hz was applied to the constructs, with or without the administration of a cyclooxygenase-2 (COX-2) selective inhibitor or dexamethasone, and then the concentrations of PGE2, interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), IL-6, IL-8 and COX-2 were measured. Results. The concentrations of PGE2, IL-6 and IL-8 in the loaded samples were significantly higher than those of unloaded samples; however, the concentrations of IL-1β and TNF-α were the same as the unloaded samples. After the administration of a COX-2 selective inhibitor, the increased concentration of PGE2 by cyclic compressive loading was impeded, but the concentrations of IL-6 and IL-8 remained high. With dexamethasone, upregulation of PGE2, IL-6 and IL-8 was suppressed. Conclusion. These results could be useful in revealing the molecular mechanism of mechanical stress in vivo for a better understanding of the pathology and therapy of OA. Cite this article: Bone Joint Res 2014;3:280–8


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 393 - 399
1 Mar 2008
Morley JR Smith RM Pape HC MacDonald DA Trejdosiewitz LK Giannoudis PV

We have undertaken a prospective study in patients with a fracture of the femoral shaft requiring intramedullary nailing to test the hypothesis that the femoral canal could be a potential source of the second hit phenomenon. We determined the local femoral intramedullary and peripheral release of interleukin-6 (IL-6) after fracture and subsequent intramedullary reaming. In all patients, the fracture caused a significant increase in the local femoral concentrations of IL-6 compared to a femoral control group. The concentration of IL-6 in the local femoral environment was significantly higher than in the patients own matched blood samples from their peripheral circulation. The magnitude of the local femoral release of IL-6 after femoral fracture was independent of the injury severity score and whether the fracture was closed or open. In patients who underwent intramedullary reaming of the femoral canal a further significant local release of IL-6 was demonstrated, providing evidence that intramedullary reaming can cause a significant local inflammatory reaction


Bone & Joint Research
Vol. 7, Issue 6 | Pages 414 - 421
1 Jun 2018
Yu CD Miao WH Zhang YY Zou MJ Yan XF

Objectives. The aim of this study was to investigate the role of miR-126 in the development of osteoarthritis, as well as the potential molecular mechanisms involved, in order to provide a theoretical basis for osteoarthritis treatment and a novel perspective for clinical therapy. Methods. Human chondrocyte cell line CHON-001 was administrated by different doses of interleukin (IL)-1β to simulate inflammation. Cell viability, migration, apoptosis, IL-6, IL-8, and tumour necrosis factor (TNF)-α expression, as well as expression of apoptosis-related factors, were measured to assess inflammation. miR-126 expression was measured by quantitative polymerase chain reaction (qPCR). Cells were then transfected with miR-126 inhibitor to assess the effect of miR-126 on IL-1β-injured CHON-001 cells. Expression of B-cell lymphoma 2 (Bcl-2) and the activity of mitogen-activated protein kinase (MAPK) / Jun N-terminal kinase (JNK) signaling pathway were measured by Western blot to explore the underlying mechanism through which miR-126 affects IL-1β-induced inflammation. Results. After IL-1β administration, cell viability and migration were suppressed while apoptosis was enhanced. Expression of IL-6, IL-8, and TNF-α were all increased, and miR-126 was upregulated. In IL-1β-administrated CHON-001 cells, miR-126 inhibitor suppressed the effect of IL-1β on cell viability, migration, apoptosis, and inflammatory response. Bcl-2 expression was negatively regulated with miR-126 in IL-1β-administrated cells, and thus affected expressions of phosphorylated MAPK and JNK. Conclusion. IL-1β-induced inflammatory markers and miR-126 was upregulated. Inhibition of miR-126 decreased IL-1β-induced inflammation and cell apoptosis, and upregulated Bcl-2 expression via inactivating the MAKP/JNK signalling pathway. Cite this article: C. D. Yu, W. H. Miao, Y. Y. Zhang, M. J. Zou, X. F. Yan. Inhibition of miR-126 protects chondrocytes from IL-1β induced inflammation via upregulation of Bcl-2. Bone Joint Res 2018;7:414–421. DOI: 10.1302/2046-3758.76.BJR-2017-0138.R1


Bone & Joint Research
Vol. 7, Issue 5 | Pages 362 - 372
1 May 2018
Ueda Y Inui A Mifune Y Sakata R Muto T Harada Y Takase F Kataoka T Kokubu T Kuroda R

Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and diabetic rats and to give insights into the processes involved in tendinopathy. Methods. Using tenocytes from normal Sprague-Dawley rats, cultured both in control and high glucose conditions, reactive oxygen species (ROS) production, cell proliferation, messenger RNA (mRNA) expression of NADPH oxidase (NOX) 1 and 4, interleukin-6 (IL-6), matrix metalloproteinase (MMP)-2, tissue inhibitors of matrix metalloproteinase (TIMP)-1 and -2 and type I and III collagens were determined after 48 and 72 hours in vitro. In an in vivo study, using diabetic rats and controls, NOX1 and 4 expressions in Achilles tendon were also determined. Results. In tenocyte cultures grown under high glucose conditions, gene expressions of NOX1, MMP-2, TIMP-1 and -2 after 48 and 72 hours, NOX4 after 48 hours and IL-6, type III collagen and TIMP-2 after 72 hours were significantly higher than those in control cultures grown under control glucose conditions. Type I collagen expression was significantly lower after 72 hours. ROS accumulation was significantly higher after 48 hours, and cell proliferation after 48 and 72 hours was significantly lower in high glucose than in control glucose conditions. In the diabetic rat model, NOX1 expression within the Achilles tendon was also significantly increased. Conclusion. This study suggests that high glucose conditions upregulate the expression of mRNA for NOX1 and IL-6 and the production of ROS. Moreover, high glucose conditions induce an abnormal tendon matrix expression pattern of type I collagen and a decrease in the proliferation of rat tenocytes. Cite this article: Y. Ueda, A. Inui, Y. Mifune, R. Sakata, T. Muto, Y. Harada, F. Takase, T. Kataoka, T. Kokubu, R. Kuroda. The effects of high glucose condition on rat tenocytes in vitro and rat Achilles tendon in vivo. Bone Joint Res 2018;7:362–372. DOI: 10.1302/2046-3758.75.BJR-2017-0126.R2


Bone & Joint Research
Vol. 6, Issue 4 | Pages 253 - 258
1 Apr 2017
Hsu C Lin C Jou I Wang P Lee J

Objectives. Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the human population. Recently, increased concentration of nitric oxide in serum and synovial fluid in patients with OA has been observed. However, the exact role of nitric oxide in the initiation of OA has not been elucidated. The aim of the present study was to investigate the role of nitric oxide in innate immune regulation during OA initiation in rats. Methods. Rat OA was induced by performing meniscectomy surgery while cartilage samples were collected 0, 7, and 14 days after surgery. Cartilage cytokine levels were determined by using enzyme-linked immunosorbent assay, while other proteins were assessed by using Western blot. Results. In the time course of the study, nitric oxide was increased seven and 14 days after OA induction. Pro-inflammatory cytokines including tumour necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were decreased. L-NG-Nitroarginine methyl ester (L-NAME, a non-specific nitric oxide synthase inhibitor) significantly decreased cartilage nitric oxide and blocked immune suppression. Further, L-NAME decreased Matrix metalloproteinase (MMPs) and increased tissue inhibitor of metalloproteinase (TIMP) expression in meniscectomised rats. Conclusion. Nitric oxide-dependent innate immune suppression protects cartilage from damage in the early stages of OA initiation in rats. Cite this article: C-C. Hsu, C-L. Lin, I-M. Jou, P-H. Wang, J-S. Lee. The protective role of nitric oxide-dependent innate immunosuppression in the early stage of cartilage damage in rats: Role of nitric oxide in ca rtilage da mage. Bone Joint Res 2017;6:253–258. DOI: 10.1302/2046-3758.64.BJJ-2016-0161.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 912 - 917
1 Aug 2004
Beeton CA Chatfield D Brooks RA Rushton N

There is evidence that fractures heal more rapidly in patients with head injury. We measured the circulating level of interleukin-6 (IL-6) and its soluble receptor (sIL-6R) and soluble glycoprotein 130 (sgp130) in serum from patients who had sustained a head injury with and without fracture and compared these with levels found in control subjects. Within 12 hours of injury the serum level of IL-6 was significantly higher in patients with head injury and fracture compared with the control group. Levels of IL-6 were also significantly higher in patients with head injury and fracture compared with fracture only. While there was no significant difference in circulating levels of sIL-6R in the initial samples they were increased one week after surgery in patients with head injury and fracture and with head injury only. In addition, reduced levels of sgp130 in patients with head injury with and without fracture indicated a possible reduction of the inhibitory effect of this protein on the activity of IL-6. Our study suggests that IL-6 may be involved in altered healing of a fracture after head injury


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 924 - 930
1 Sep 1998
Lind M Trindade MCD Yaszay B Goodman SB Smith RL

The interactions between the different cell types in periprosthetic tissue are still unclear. We used a non-contact coculture model to investigate the effects of polymethylmethacrylate (PMMA) particles and human macrophage-derived soluble mediators on fibroblast activation. Macrophages were either exposed or not exposed to phagocytosable PMMA particles, but fibroblasts were not. Increasing numbers of macrophages were tested in cocultures in which the fibroblast cell number was held constant and cultures of macrophages alone were used for comparison of cytokine release. We used the release of interleukin-1 beta (IL-1β), interleukin 6 (IL-6), tumour necrosis factor alpha (TNF-α), lysosomal enzyme and metalloproteinase activity to assess the cultivation of macrophages and fibroblasts. In cocultures, IL-6 release was increased 100-fold for both unchallenged and particle-challenged cultures when compared with macrophage cultures alone. Furthermore, particle-challenged cocultures had threefold higher IL-6 levels than unchallenged cocultures. Release of TNF-α was similar in cocultures and in macrophage cultures. IL-1β release in cocultures was independent of the macrophage-fibroblast ratio. Lysosomal enzyme activity and metalloproteinase activity were increased in cocultures. Our data show that macrophages and fibroblasts in coculture significantly increase the release of IL-6 and to a less degree other inflammatory mediators; particle exposure accentuates this effect. This suggests that macrophage accumulation in fibrous tissue may lead to elevated IL-6 levels that are much higher than those caused by particle activation of macrophages alone. This macrophage-fibroblast interaction represents a novel concept for the initiation and maintenance of the inflammatory process in periprosthetic membranes


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 988 - 994
1 Nov 1997
Haynes DR Hay SJ Rogers SD Ohta S Howie DW Graves SE

Bone loss around replacement prostheses may be related to the activation of mononuclear phagocytes (MNP) by prosthetic wear particles. We investigated how osteoblast-like cells were regulated by human MNP stimulated by particles of prosthetic material. Particles of titanium-6-aluminium-4-vanadium (TiAlV) stimulated MNP to release interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6 and prostaglandin E. 2. (PGE. 2. ). All these mediators are implicated in regulating bone metabolism. Particle-activated MNP inhibited bone cell proliferation and stimulated release of IL-6 and PGE. 2. The number of cells expressing alkaline phosphatase, a marker associated with mature osteo-blastic cells, was reduced. Experiments with blocking antibodies showed that TNFα was responsible for the reduction in proliferation and the numbers of cells expressing alkaline phosphatase. By contrast, IL-1β stimulated cell proliferation and differentiation. Both IL-1β and TNFα stimulated IL-6 and PGE. 2. release from the osteoblast-like cells. Our results suggest that particle-activated mono-nuclear phagocytes can induce a change in the balance between bone formation and resorption by a number of mechanisms


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1202 - 1206
1 Nov 2003
Fiorito S Magrini L Goalard C

We investigated the circulating levels of the main cytokines involved in bone resorption (IL-1β, IL-6, TNF-α), prostaglandins (PGE. 2. ) and metalloproteases (MMP-1), as possible early markers of osteolysis, in the serum of eight patients with periprosthetic osteolysis and ten patients without osteolysis. All had received a cementless hip prosthesis (ABG-1). We also assessed the serum levels of IL-11 and TGF-β anti-inflammatory cytokines exerting protective effect on bone resorption. The mean serum levels of IL-1β, IL-6, TNF-α, TGF-β, MMP-1, and PGE. 2. in patients with periprosthetic osteolysis did not differ significantly from those of patients without osteolysis or from those of normal controls. IL-11 serum levels were not detectable at all in any of the patients, while they were detected within normal reference values in the control subjects (significant inverse correlation). We believe that circulating cytokines cannot be regarded as markers of osteolysis, a condition characterised by a local inflammation without systemic signs of inflammation. On the contrary, the undetectable levels of IL-11 in implanted patients could provide evidence for a lack of balance between pro- and anti-inflammatory cytokines in these patients


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 6 | Pages 902 - 911
1 Aug 2001
Haynes DR Crotti TN Potter AE Loric M Atkins GJ Howie DW Findlay DM

Extensive osteolysis adjacent to implants is often associated with wear particles of prosthetic material. We have investigated if RANKL, also known as osteoprotegerin ligand, osteoclast differentiation factor or TRANCE, and its natural inhibitor, osteoprotegerin (OPG), may be important in controlling this bone loss. Cells isolated from periprosthetic tissues containing wear particles expressed mRNA encoding for the pro-osteoclastogenic molecules, RANKL, its receptor RANK, monocyte colony-stimulating factor (M-CSF), interleukin (IL)-1β, tumour necrosis factor (TNF)α, IL-6, and soluble IL-6 receptor, as well as OPG. Osteoclasts formed from cells isolated from periprosthetic tissues in the presence and absence of human osteoblastic cells. When osteoclasts formed in the absence of osteoblastic cells, markedly higher levels of RANKL mRNA relative to OPG mRNA were expressed. Particles of prosthetic materials also stimulated human monocytes to express osteoclastogenic molecules in vitro. Our results suggest that ingestion of prosthetic wear particles by macrophages results in expression of osteoclast-differentiating molecules and the stimulation of macrophage differentiation into osteoclasts


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 755 - 759
1 Jul 2000
Ferrier GM McEvoy A Evans CE Andrew JG

Aseptic loosening and osteolysis around prosthetic joints are the principal causes of failure and consequent revision. During this process activated macrophages produce cytokines which are thought to promote osteolysis by osteoclasts. Changes in pressure within the space around implants have been proposed as a cause of loosening and osteolysis. We therefore studied the effect of two different regimes of cyclic pressure on the production of interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-α (TNF-α) by cultured human monocyte-derived (M-D) macrophages. There was a wide variation in the expression of cytokines in non-stimulated M-D macrophages from different donors and therefore cells from the same donor were compared under control and pressurised conditions. Both regimes of cyclic pressure were found to increase expression of IL-6 and TNF-α. Expression of IL-1β was increased by a higher-frequency regime only. Our findings suggest that M-D macrophages are activated by cyclic pressure. Further work will be required to understand the relative roles of frequency, amplitude and duration of applied pressure in the cellular effects of cyclic pressure in this system


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 1 | Pages 163 - 166
1 Jan 1999
Nivbrant B Karlsson K Kärrholm J

We analysed synovial fluid from 88 hips, 38 with osteoarthritis and 12 with well-functioning and 38 with loose hip prostheses. The levels of TNF-α, IL-1ß (71 hips) and IL-6 (45 hips) were measured using the ELISA technique. Joints with well-functioning or loose prostheses had significantly increased levels of TNF-α compared with those with osteoarthritis. Hips with aseptic loosening also had higher levels of IL-1ß but not of IL-6 compared with those without an implant. The levels of TNF-α and IL-1ß did not differ between hips with stable and loose prostheses. Higher levels of TNF-α were found in hips with bone resorption of type II and type III (Gustilo-Pasternak) compared with those with type-I loosening. The level of cytokines in joint fluid was not influenced by the time in situ of the implants or the age, gender or area of the osteolysis as measured on conventional radiographs. Our findings support the theory that macrophages in the joint capsule increase the production of TNF-α at an early phase probably because of particle load and in the absence of clinical loosening. Since TNF-α has an important role in the osteolytic process, the interfaces should be protected from penetration of joint fluid


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 5 | Pages 748 - 754
1 Jul 2000
Case CP Langkamer VG Lock RJ Perry MJ Palmer MR Kemp AJ

We compared the peripheral blood and periprosthetic tissues of 53 patients at revision arthroplasty with those of 30 patients at primary arthroplasty to determine whether there is a systemic difference in lymphocytes in patients with worn hip implants. The absolute number and relative proportion of lymphocytes bearing CD2, CD3, CD4, CD8, CD16, CD19, HLA-DR, kappa and lambda antigens were compared with the levels of IL-1β, IL-6 and PGE. 2. in the pseudosynovial membrane as well as with a semiquantitative estimate of metal and polyethylene particles, necrosis and chronic inflammation and the total concentration of metals within the periprosthetic tissues. There was a significant increase in the relative proportion of CD2-positive T-cells and CD16-positive natural killer cells in the peripheral blood at revision arthroplasty compared with primary arthroplasty and an increased proportion of CD8-positive T-cells and a decreased ratio of CD4 to CD8 (helper inducer/suppressor cytotoxic cells). Three control patients, who went on to have revision surgery, had values at primary arthroplasty which were similar to those of patients at the time of revision surgery. These differences did not correlate with the local concentration of metal, plastic or cement or inflammatory response or the type of prosthesis. An inverse correlation was noted between the necrosis in the periprosthetic tissue and both the local production of IL-6 and the absolute numbers of T-cells in peripheral blood. We conclude that there may be several cell-mediated systemic immune responses to aseptic loosening, at least one of which may be directly related to events in the periprosthetic tissues. We cannot exclude the possibility that the changes in the proportion of CD8-positive cells reflected a predisposition, rather than a reaction, to loosening of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 912 - 917
1 Sep 1998
Granchi D Verri E Ciapetti G Stea S Savarino L Sudanese A Mieti M Rotini R Dallari D Zinghi G Montanaro L

Our aim was to determine if the serum levels of bone-resorbing cytokines (IL-1β, TNF-α, IL-6, GM-CSF) are altered in patients with aseptic loosening of a total hip prosthesis, and if such levels are influenced by the type of implant. We determined cytokine levels in sera from 35 patients before revision for failed total hip arthroplasty and compared them with those in 25 healthy donors. We also assessed the soluble receptor of interleukin-2 (sIL-2r) in serum as an indication of a specific immune reaction against the implant. Our findings showed that the sIL-2r and TNF-α serum level did not change. The IL-6 level was not significantly altered, but was higher in patients with TiAlV prostheses than in those with a CrCoMo implant and in patients with cemented prostheses. The IL-1β level was found to be higher in those with a TiAlV cemented prosthesis than in the control group (p = 0.0001) and other groups of patients (p = 0.003 v uncemented TiAlV, p = 0.01 v cemented CrCoMo, p = 0.001 v uncemented CrCoMo). The GM-CSF level significantly increased in patients compared with healthy subjects (p = 0.008), and it was higher in those with cemented than with uncemented implants (p = 0.01). Only patients with cementless CrCoMo prostheses had levels of GM-CSF similar to those of the control group. The highest GM-CSF concentrations were observed in patients treated with non-steroidal anti-inflammatory drugs (NSAIDs) in the last months before revision (p = 0.04). In addition, when massive osteolysis was observed, the level of GM-CSF tended to decrease to that of the control group


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 448 - 458
1 Apr 2001
Jones LC Frondoza C Hungerford DS

The pathogenesis of aseptic loosening of total joint prostheses is not clearly understood. Two features are associated with loosened prostheses, namely, particulate debris and movement of the implant. While numerous studies have evaluated the cellular response to particulate biomaterials, few have investigated the influence of movement of the implant on the biological response to particles. Our aim was therefore to test the hypothesis that excessive mechanical stimulation of the periprosthetic tissues induces an inflammatory response and that the addition of particulate biomaterials intensifies this. We allocated 66 adult Beagle dogs to four groups as follows: stable implants with (I) and without (II) particulate polymethylmethacrylate (PMMA) and moving implants with (III) and without (IV) particulate PMMA. They were then evaluated at 2, 4, 6, 12 and 24 weeks. The stable implants were well tolerated and a thin, fibrous membrane of connective tissue was observed. There was evidence of positive staining in some cells for interleukin-6 (IL-6). Addition of particulate PMMA around the stable implants resulted in an increase in the fibroblastic response and positive staining for IL-6 and tumour necrosis factor-alpha (TNF-α). By contrast, movement of the implant resulted in an immediate inflammatory response characterised by large numbers of histiocytes and cytokine staining for IL-1ß, TNF-α and IL-6. Introduction of particulate PMMA aggravated this response. Animals with particulate PMMA and movement of the implant have an intense inflammatory response associated with accelerated bone loss. Our results indicate that the initiation of the inflammatory response to biomaterial particles was much slower than that to gross mechanical instability. Furthermore, when there was both particulate debris and movement, there was an amplification of the adverse tissue response as evidenced by the presence of osteolysis and increases in the presence of inflammatory cells and their associated cytokines


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 920 - 930
1 Aug 2002
Liagre B Moalic S Vergne P Charissoux JL Bernache-Assollant D Beneytout JL

We describe a model which can be used for in vitro biocompatibility assays of biomaterials. We studied the in vitro response of human osteoarthritis or rheumatoid arthritis fibroblast-like synoviocytes to Al. 2. O. 3. or ZrO. 2. particles by analyzing the production of interleukin-1 (IL-1) and interleukin-6 (IL-6) and the metabolism of arachidonic acid via lipoxygenase and cyclo-oxygenase pathways. Our results show that, in these cells and under our experimental conditions, Al. 2. O. 3. and ZrO. 2. did not significantly modify the synthesis of IL-1 and IL-6 or the metabolism of arachidonic acid


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 593 - 597
1 May 2001
Kamikawa K Harada Y Nagata K Moriya H

Sterilisation by gamma irradiation in the presence of air causes free radicals generated in polyethylene (PE) to react with oxygen, which could lead to loss of physical properties and reduction in fatigue strength. Tissue retrieved from failed total hip replacements often has large quantities of particulate PE and most particles associated with peri-implant osteolysis are oxidised. Consequently, an understanding of the cellular responses of oxidised PE particles may lead to clarification of the pathogenesis of osteolysis and aseptic loosening. We have used the agarose system to demonstrate the differential effects of oxidised and non-oxidised PE particles on the release of proinflammatory products such as interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α) from monocytes/ macrophages (M/M). Oxidised PE particles were shown to stimulate human M/M to phagocytose and to release cytokines. Oxidation may alter the surface chemistry of the particles and enhance the response to specific membrane receptors on macrophages, such as scavenger-type receptors


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 540 - 545
1 May 1998
Roosendaal G Vianen ME Wenting MJG van Rinsum AC van den Berg HM Lafeber FPJG Bijlsma JWJ

Haemophilic arthropathy is characterised by iron deposits in synovial tissues. We investigated the suggestion that iron plays an important role in synovial changes. We obtained synovial tissue from six patients with haemophilia during arthroplasty, finding that brown haemosideritic tissue was often adjacent to tissue with a macroscopically normal appearance in the same joint. Samples from both types of synovial tissue were analysed histologically and biochemically to determine catabolic activity. Macroscopically haemosideritic synovium showed a significantly higher inflammatory activity than that with a normal appearance. Cultures of abnormal synovial tissue gave a significantly enhanced production of IL-1, IL-6 and TNFα compared with cultures of synovial tissue with a normal appearance. In addition, the supernatant fluids from the cultures showed greater catabolic activity from haemosideritic tissue, as determined by the inhibition of the synthesis of articular cartilage matrix. We conclude that in patients with haemophilic arthropathy, local synovial iron deposits are associated with increased catabolic activity


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 3 | Pages 531 - 539
1 May 1998
Goodman SB Huie P Song Y Schurman D Maloney W Woolson S Sibley R

The tissues surrounding 65 cemented and 36 cementless total joint replacements undergoing revision were characterised for cell types by immunohistochemistry and for cytokine expression by in situ hybridisation. We identified three distinct groups of revised implants: loose implants with ballooning radiological osteolysis, loose implants without osteolysis, and well-fixed implants. In the cemented series, osteolysis was associated with increased numbers of macrophages (p = 0.0006), T-lymphocyte subgroups (p = 0.03) and IL-1 (p = 0.02) and IL-6 (p = 0.0001) expression, and in the cementless series with increased numbers of T-lymphocyte subgroups (p = 0.005) and increased TNFα expression (p = 0.04). For cemented implants, the histological, histochemical and cytokine profiles of the interface correlated with the clinical and radiological grade of loosening and osteolysis. Our findings suggest that there are different biological mechanisms of loosening and osteolysis for cemented and cementless implants. T-lymphocyte modulation of macrophage function may be an important interaction at prosthetic interfaces