Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:

Aims. This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Methods. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes. Results. WGCNA revealed critical gene modules for OB and OP, identifying the Toll-like receptor (TLR) signalling pathway as a common factor. TLR2 was the most significant gene, with a pronounced expression in macrophages. Elevated TLR2 expression correlated with increased adipose accumulation, inflammation, and osteoclast differentiation, linking it to OP development. Conclusion. Our study underscores the pivotal role of TLR2 in connecting OP and OB. It highlights the influence of TLR2 in macrophages, driving both diseases through a pro-inflammatory mechanism. These insights propose TLR2 as a potential dual therapeutic target for treating OP and OB. Cite this article: Bone Joint Res 2024;13(10):573–587


Bone & Joint Research
Vol. 11, Issue 8 | Pages 548 - 560
17 Aug 2022
Yuan W Yang M Zhu Y

Aims

We aimed to develop a gene signature that predicts the occurrence of postmenopausal osteoporosis (PMOP) by studying its genetic mechanism.

Methods

Five datasets were obtained from the Gene Expression Omnibus database. Unsupervised consensus cluster analysis was used to determine new PMOP subtypes. To determine the central genes and the core modules related to PMOP, the weighted gene co-expression network analysis (WCGNA) was applied. Gene Ontology enrichment analysis was used to explore the biological processes underlying key genes. Logistic regression univariate analysis was used to screen for statistically significant variables. Two algorithms were used to select important PMOP-related genes. A logistic regression model was used to construct the PMOP-related gene profile. The receiver operating characteristic area under the curve, Harrell’s concordance index, a calibration chart, and decision curve analysis were used to characterize PMOP-related genes. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression of the PMOP-related genes in the gene signature.