Advertisement for orthosearch.org.uk
Results 1 - 20 of 165
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 254 - 260
1 Mar 2023
Bukowski BR Sandhu KP Bernatz JT Pickhardt PJ Binkley N Anderson PA Illgen R

Aims. Osteoporosis can determine surgical strategy for total hip arthroplasty (THA), and perioperative fracture risk. The aims of this study were to use hip CT to measure femoral bone mineral density (BMD) using CT X-ray absorptiometry (CTXA), determine if systematic evaluation of preoperative femoral BMD with CTXA would improve identification of osteopenia and osteoporosis compared with available preoperative dual-energy X-ray absorptiometry (DXA) analysis, and determine if improved recognition of low BMD would affect the use of cemented stem fixation. Methods. Retrospective chart review of a single-surgeon database identified 78 patients with CTXA performed prior to robotic-assisted THA (raTHA) (Group 1). Group 1 was age- and sex-matched to 78 raTHAs that had a preoperative hip CT but did not have CTXA analysis (Group 2). Clinical demographics, femoral fixation method, CTXA, and DXA data were recorded. Demographic data were similar for both groups. Results. Preoperative femoral BMD was available for 100% of Group 1 patients (CTXA) and 43.6% of Group 2 patients (DXA). CTXA analysis for all Group 1 patients preoperatively identified 13 osteopenic and eight osteoporotic patients for whom there were no available preoperative DXA data. Cemented stem fixation was used with higher frequency in Group 1 versus Group 2 (28.2% vs 14.3%, respectively; p = 0.030), and in all cases where osteoporosis was diagnosed, irrespective of technique (DXA or CTXA). Conclusion. Preoperative hip CT scans which are routinely obtained prior to raTHA can determine bone health, and thus guide femoral fixation strategy. Systematic preoperative evaluation with CTXA resulted in increased recognition of osteopenia and osteoporosis, and contributed to increased use of cemented femoral fixation compared with routine clinical care; in this small study, however, it did not impact short-term periprosthetic fracture risk. Cite this article: Bone Joint J 2023;105-B(3):254–260


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims. Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients. Methods. A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS). Results. The HSS was significantly lower in the study group (1.76 (SD 0.46)) than in the control group (2.31 (SD 0.74); p = 0.002). A multivariate model showed the odds of having a hip fracture were 17 times greater in patients who had an HSS ≤ 2.2. The CTFEA has a sensitivity of 89%, a specificity of 76%, and an area under the curve of 0.90. Conclusion. This preliminary study demonstrates the feasibility of using a CTFEA-based bone strength parameter to assess hip fracture risk in a population of T2DM patients. Cite this article: Bone Joint J 2021;103-B(9):1497–1504


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 11 - 15
1 Jan 2024
Jain S Lamb JN Pandit H

Polished taper-slip (PTS) cemented stems have an excellent clinical track record and are the most common stem type used in primary total hip arthroplasty (THA) in the UK. Due to low rates of aseptic loosening, they have largely replaced more traditional composite beam (CB) cemented stems. However, there is now emerging evidence from multiple joint registries that PTS stems are associated with higher rates of postoperative periprosthetic femoral fracture (PFF) compared to their CB stem counterparts. The risk of both intraoperative and postoperative PFF remains greater with uncemented stems compared to either of these cemented stem subtypes. PFF continues to be a devastating complication following primary THA and is associated with high complication and mortality rates. Recent efforts have focused on identifying implant-related risk factors for PFF in order to guide preventative strategies, and therefore the purpose of this article is to present the current evidence on the effect of cemented femoral stem design on the risk of PFF.

Cite this article: Bone Joint J 2024;106-B(1):11–15.


Bone & Joint Research
Vol. 1, Issue 2 | Pages 13 - 19
1 Feb 2012
Smith MD Baldassarri S Anez-Bustillos L Tseng A Entezari V Zurakowski D Snyder BD Nazarian A

Objectives

This study aims to assess the correlation of CT-based structural rigidity analysis with mechanically determined axial rigidity in normal and metabolically diseased rat bone.

Methods

A total of 30 rats were divided equally into normal, ovariectomized, and partially nephrectomized groups. Cortical and trabecular bone segments from each animal underwent micro-CT to assess their average and minimum axial rigidities using structural rigidity analysis. Following imaging, all specimens were subjected to uniaxial compression and assessment of mechanically-derived axial rigidity.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1135 - 1142
1 Aug 2012
Derikx LC van Aken JB Janssen D Snyers A van der Linden YM Verdonschot N Tanck E

Previously, we showed that case-specific non-linear finite element (FE) models are better at predicting the load to failure of metastatic femora than experienced clinicians. In this study we improved our FE modelling and increased the number of femora and characteristics of the lesions. We retested the robustness of the FE predictions and assessed why clinicians have difficulty in estimating the load to failure of metastatic femora. A total of 20 femora with and without artificial metastases were mechanically loaded until failure. These experiments were simulated using case-specific FE models. Six clinicians ranked the femora on load to failure and reported their ranking strategies. The experimental load to failure for intact and metastatic femora was well predicted by the FE models (R. 2. = 0.90 and R. 2. = 0.93, respectively). Ranking metastatic femora on load to failure was well performed by the FE models (τ = 0.87), but not by the clinicians (0.11 < τ < 0.42). Both the FE models and the clinicians allowed for the characteristics of the lesions, but only the FE models incorporated the initial bone strength, which is essential for accurately predicting the risk of fracture. Accurate prediction of the risk of fracture should be made possible for clinicians by further developing FE models.


Bone & Joint 360
Vol. 12, Issue 6 | Pages 36 - 39
1 Dec 2023

The December 2023 Trauma Roundup. 360. looks at: Distal femoral arthroplasty: medical risks under the spotlight; Quads repair: tunnels or anchors?; Complex trade-offs in treating severe tibial fractures: limb salvage versus primary amputation; Middle-sized posterior malleolus fractures – to fix?; Bone transport through induced membrane: a randomized controlled trial; Displaced geriatric femoral neck fractures; Risk factors for reoperation to promote union in 1,111 distal femur fractures; New versus old – reliability of the OTA/AO classification for trochanteric hip fractures; Risk factors for fracture-related infection after ankle fracture surgery


Bone & Joint Open
Vol. 4, Issue 7 | Pages 472 - 477
1 Jul 2023
Xiang W Tarity TD Gkiatas I Lee H Boettner F Rodriguez JA Wright TM Sculco PK

Aims. When performing revision total hip arthroplasty using diaphyseal-engaging titanium tapered stems (TTS), the recommended 3 to 4 cm of stem-cortical diaphyseal contact may not be available. In challenging cases such as these with only 2 cm of contact, can sufficient axial stability be achieved and what is the benefit of a prophylactic cable? This study sought to determine, first, whether a prophylactic cable allows for sufficient axial stability when the contact length is 2 cm, and second, if differing TTS taper angles (2° vs 3.5°) impact these results. Methods. A biomechanical matched-pair cadaveric study was designed using six matched pairs of human fresh cadaveric femora prepared so that 2 cm of diaphyseal bone engaged with 2° (right femora) or 3.5° (left femora) TTS. Before impaction, three matched pairs received a single 100 lb-tensioned prophylactic beaded cable; the remaining three matched pairs received no cable adjuncts. Specimens underwent stepwise axial loading to 2600 N or until failure, defined as stem subsidence > 5 mm. Results. All specimens without cable adjuncts (6/6 femora) failed during axial testing, while all specimens with a prophylactic cable (6/6) successfully resisted axial load, regardless of taper angle. In total, four of the failed specimens experienced proximal longitudinal fractures, three of which occurred with the higher 3.5° TTS. One fracture occurred in a 3.5° TTS with a prophylactic cable yet passed axial testing, subsiding < 5 mm. Among specimens with a prophylactic cable, the 3.5° TTS resulted in lower mean subsidence (0.5 mm (SD 0.8)) compared with the 2° TTS (2.4 mm (SD 1.8)). Conclusion. A single prophylactic beaded cable dramatically improved initial axial stability when stem-cortex contact length was 2 cm. All implants failed secondary to fracture or subsidence > 5 mm when a prophylactic cable was not used. A higher taper angle appears to decrease the magnitude of subsidence but increased the fracture risk. The fracture risk was mitigated by the use of a prophylactic cable. Cite this article: Bone Jt Open 2023;4(7):472–477


Bone & Joint 360
Vol. 13, Issue 5 | Pages 47 - 49
1 Oct 2024

The October 2024 Research Roundup. 360. looks at: Fracture risk among stroke survivors according to post-stroke disability status and stroke type; Noise-induced hearing loss: should surgeons be wearing ear protection during primary total joint replacement?; Intravenous dexamethasone in hip arthroscopy can enhance recovery; Patient-reported outcomes following periprosthetic joint infection of the hip and knee: a longitudinal, prospective observational study; When should surgery take place after weight loss?; Which type of surgery is the hardest physically and mentally?


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims. This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture. Methods. Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk. Results. During gait, varied sagittal positioning did not lead to excessive Von Mises stress or micromotion. However, under squat conditions, posterior positioning (-4 and -5 mm) resulted in stress exceeding 150 MPa at the femoral notch, indicating potential fracture risk. Conversely, +1 mm and 0 mm sagittal positions demonstrated minimal interface micromotion. Conclusion. Slightly anterior sagittal positioning (+1 mm) or neutral positioning (0 mm) effectively reduced stress concentration at the femoral notch and minimized interface micromotion. Thus, these positions are deemed suitable to decrease the risk of aseptic loosening and periprosthetic femoral fracture


Bone & Joint 360
Vol. 12, Issue 1 | Pages 23 - 25
1 Feb 2023

The February 2023 Foot & Ankle Roundup. 360. looks at: Joint inflammatory response in ankle and pilon fractures; Tibiotalocalcaneal fusion with a custom cage; Topical application of tranexamic acid can reduce blood loss in calcaneal fractures; Risk factors for failure of total ankle arthroplasty; Pain catastrophizing: the same as pain forecasting?


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims. Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model. Methods. Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods. Results. Impaction force was reduced by 89% and 53% for vibratory insertion in 15 and 30 PCF foams, respectively. Both methods positioned the component with polar gaps under 2 mm in 15 PCF foam. However, in 30 PCF foam, the vibratory insertion resulted in a clinically undesirable polar gap of over 2 mm. A higher lever-out moment was achieved with the consecutive single blow insertion by 42% in 15 PCF and 2.7 times higher in 30 PCF foam. Conclusion. Vibratory implant insertion may lower periprosthetic fracture risk by reducing impaction forces, particularly in low-quality bone. Achieving implant seating using vibratory insertion requires adjustment of the nominal press-fit, especially in denser bone. Further preclinical testing on real bone tissue is necessary to assess whether its viscoelasticity in combination with an adjusted press-fit can compensate for the reduced primary stability after vibratory insertion observed in this study. Cite this article: Bone Joint Res 2024;13(6):272–278


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 801 - 807
1 Jul 2023
Dietrich G Terrier A Favre M Elmers J Stockton L Soppelsa D Cherix S Vauclair F

Aims. Tobacco, in addition to being one of the greatest public health threats facing our world, is believed to have deleterious effects on bone metabolism and especially on bone healing. It has been described in the literature that patients who smoke are approximately twice as likely to develop a nonunion following a non-specific bone fracture. For clavicle fractures, this risk is unclear, as is the impact that such a complication might have on the initial management of these fractures. Methods. A systematic review and meta-analysis were performed for conservatively treated displaced midshaft clavicle fractures. Embase, PubMed, and Cochrane Central Register of Controlled Trials (via Cochrane Library) were searched from inception to 12 May 2022, with supplementary searches in Open Grey, ClinicalTrials.gov, ProQuest Dissertations & Theses, and Google Scholar. The searches were performed without limits for publication date or languages. Results. The meta-analysis included eight studies, 2,285 observations, and 304 events (nonunion). The random effects model predicted a pooled risk ratio (RR) of 3.68 (95% confidence interval 1.87 to 7.23), which can be considered significant (p = 0.003). It indicates that smoking more than triples the risk of nonunion when a fracture is treated conservatively. Conclusion. Smoking confers a RR of 3.68 for developing a nonunion in patients with a displaced middle third clavicle fracture treated conservatively. We know that most patients with pseudarthrosis will have pain and a poor functional outcome. Therefore, patients should be informed of the significantly higher risks of nonunion and offered smoking cessation efforts and counselling. Moreover, surgery should be considered for any patient who smokes with this type of fracture. Cite this article: Bone Joint J 2023;105-B(7):801–807


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 986 - 993
1 Sep 2024
Hatano M Sasabuchi Y Isogai T Ishikura H Tanaka T Tanaka S Yasunaga H

Aims. The aim of this study was to compare the early postoperative mortality and morbidity in older patients with a fracture of the femoral neck, between those who underwent total hip arthroplasty (THA) and those who underwent hemiarthroplasty. Methods. This nationwide, retrospective cohort study used data from the Japanese Diagnosis Procedure Combination database. We included older patients (aged ≥ 60 years) who underwent THA or hemiarthroplasty after a femoral neck fracture, between July 2010 and March 2022. A total of 165,123 patients were included. The THA group was younger (mean age 72.6 (SD 8.0) vs 80.7 years (SD 8.1)) and had fewer comorbidities than the hemiarthroplasty group. Patients with dementia or malignancy were excluded because they seldom undergo THA. The primary outcome measures were mortality and complications while in hospital, and secondary outcomes were readmission and reoperation within one and two years after discharge, and the costs of hospitalization. We conducted an instrumental variable analysis (IVA) using differential distance as a variable. Results. The IVA analysis showed that the THA group had a significantly higher rate of complications while in hospital (risk difference 6.3% (95% CI 2.0 to 10.6); p = 0.004) than the hemiarthroplasty group, but there was no significant difference in the rate of mortality while in hospital (risk difference 0.3% (95% CI -1.7 to 2.2); p = 0.774). There was no significant difference in the rate of readmission (within one year: risk difference 1.3% (95% CI -1.9 to 4.5); p = 0.443; within two years: risk difference 0.1% (95% CI -3.2 to 3.4); p = 0.950) and reoperation (within one year: risk difference 0.3% (95% CI -0.6 to 1.1); p = 0.557; within two years: risk difference 0.1% (95% CI -0.4 to 0.7); p = 0.632) after discharge. The costs of hospitalization were significantly higher in the THA group than in the hemiarthroplasty group (difference $2,634 (95% CI $2,496 to $2,772); p < 0.001). Conclusion. Among older patients undergoing surgery for a femoral neck fracture, the risk of early complications was higher after THA than after hemiarthroplasty. Our findings should aid in clinical decision-making in these patients. Cite this article: Bone Joint J 2024;106-B(9):986–993


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 650 - 658
1 Apr 2021
Konow T Baetz J Melsheimer O Grimberg A Morlock M

Aims. Periprosthetic femoral fractures (PPF) are a serious complication of total hip arthroplasty (THA) and are becoming an increasingly common indication for revision arthroplasty with the ageing population. This study aimed to identify potential risk factors for PPF based on an analysis of registry data. Methods. Cases recorded with PPF as the primary indication for revision arthroplasty in the German Arthroplasty Registry (Endoprothesenregister Deutschland (EPRD)), as well as those classified as having a PPF according to the International Classification of Diseases (ICD) codes in patients’ insurance records were identified from the complete datasets of 249,639 registered primary hip arthroplasties in the EPRD and included in the analysis. Results. The incidence of PPFs was higher (24.6%; 1,483) than reported in EPRD annual reports listing PPF as the main reason for revision (10.9%; 654). The majority of fractures occurred intraoperatively and were directly related to the implantation process. Patients who were elderly, female, or had comorbidities were at higher risk of PPFs (p < 0.001). German hospitals with a surgical volume of < 300 primary procedures per year had a higher rate of PPFs (p < 0.001). The use of cemented and collared prostheses had a lower fracture risk PPF compared to uncemented and collarless components, respectively (both p < 0.001). Collared prostheses reduced the risk of PPF irrespective of the fixation method and hospital’s surgical volume. Conclusion. The high proportion of intraoperative fractures emphasises the need to improve surgeon training and surgical technique. Registry data should be interpreted with caution because of potential differences in coding standards between institutions. Cite this article: Bone Joint J 2021;103-B(4):650–658


Bone & Joint Research
Vol. 7, Issue 6 | Pages 430 - 439
1 Jun 2018
Eggermont F Derikx LC Verdonschot N van der Geest ICM de Jong MAA Snyers A van der Linden YM Tanck E

Objectives. In this prospective cohort study, we investigated whether patient-specific finite element (FE) models can identify patients at risk of a pathological femoral fracture resulting from metastatic bone disease, and compared these FE predictions with clinical assessments by experienced clinicians. Methods. A total of 39 patients with non-fractured femoral metastatic lesions who were irradiated for pain were included from three radiotherapy institutes. During follow-up, nine pathological fractures occurred in seven patients. Quantitative CT-based FE models were generated for all patients. Femoral failure load was calculated and compared between the fractured and non-fractured femurs. Due to inter-scanner differences, patients were analyzed separately for the three institutes. In addition, the FE-based predictions were compared with fracture risk assessments by experienced clinicians. Results. In institute 1, median failure load was significantly lower for patients who sustained a fracture than for patients with no fractures. In institutes 2 and 3, the number of patients with a fracture was too low to make a clear distinction. Fracture locations were well predicted by the FE model when compared with post-fracture radiographs. The FE model was more accurate in identifying patients with a high fracture risk compared with experienced clinicians, with a sensitivity of 89% versus 0% to 33% for clinical assessments. Specificity was 79% for the FE models versus 84% to 95% for clinical assessments. Conclusion. FE models can be a valuable tool to improve clinical fracture risk predictions in metastatic bone disease. Future work in a larger patient population should confirm the higher predictive power of FE models compared with current clinical guidelines. Cite this article: F. Eggermont, L. C. Derikx, N. Verdonschot, I. C. M. van der Geest, M. A. A. de Jong, A. Snyers, Y. M. van der Linden, E. Tanck. Can patient-specific finite element models better predict fractures in metastatic bone disease than experienced clinicians? Towards computational modelling in daily clinical practice. Bone Joint Res 2018;7:430–439. DOI: 10.1302/2046-3758.76.BJR-2017-0325.R2


Bone & Joint Research
Vol. 12, Issue 7 | Pages 423 - 432
6 Jul 2023
Xie H Wang N He H Yang Z Wu J Yang T Wang Y

Aims

Previous studies have suggested that selenium as a trace element is involved in bone health, but findings related to the specific effect of selenium on bone health remain inconclusive. Thus, we performed a meta-analysis by including all the relevant studies to elucidate the association between selenium status (dietary intake or serum selenium) and bone health indicators (bone mineral density (BMD), osteoporosis (OP), or fracture).

Methods

PubMed, Embase, and Cochrane Library were systematically searched to retrieve relevant articles published before 15 November 2022. Studies focusing on the correlation between selenium and BMD, OP, or fracture were included. Effect sizes included regression coefficient (β), weighted mean difference (WMD), and odds ratio (OR). According to heterogeneity, the fixed-effect or random-effect model was used to assess the association between selenium and bone health.


Bone & Joint 360
Vol. 13, Issue 1 | Pages 13 - 16
1 Feb 2024

The February 2024 Hip & Pelvis Roundup360 looks at: Trial of vancomycin and cefazolin as surgical prophylaxis in arthroplasty; Is preoperative posterior femoral neck tilt a risk factor for fixation failure? Cemented versus uncemented hemiarthroplasty for displaced intracapsular fractures of the hip; Periprosthetic fractures in larger hydroxyapatite-coated stems: are collared stems a better alternative for total hip arthroplasty?; Postoperative periprosthetic fracture following hip arthroplasty with a polished taper slip versus composite beam stem; Is oral tranexamic acid as good as intravenous?; Stem design and the risk of early periprosthetic femur fractures following THA in elderly patients; Does powered femoral broaching compromise patient safety in total hip arthroplasty?


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 365 - 371
1 Apr 2024
Ledford CK Shirley MB Spangehl MJ Berry DJ Abdel MP

Aims

Breast cancer survivors have known risk factors that might influence the results of total hip arthroplasty (THA) or total knee arthroplasty (TKA). This study evaluated clinical outcomes of patients with breast cancer history after primary THA and TKA.

Methods

Our total joint registry identified patients with breast cancer history undergoing primary THA (n = 423) and TKA (n = 540). Patients were matched 1:1 based upon age, sex, BMI, procedure (hip or knee), and surgical year to non-breast cancer controls. Mortality, implant survival, and complications were assessed via Kaplan-Meier methods. Clinical outcomes were evaluated via Harris Hip Scores (HHSs) or Knee Society Scores (KSSs). Mean follow-up was six years (2 to 15).


Bone & Joint Research
Vol. 12, Issue 7 | Pages 412 - 422
4 Jul 2023
Ferguson J Bourget-Murray J Hotchen AJ Stubbs D McNally M

Aims

Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up.

Methods

A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite ceramic containing gentamicin (Group CG). Outcome measures were infection recurrence, wound leakage, and subsequent fracture involving the treated segment. Bone-void filling was assessed radiologically at a minimum of six months post-surgery.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 691 - 701
3 Nov 2023
Dai Z Chen Y He E Wang H Guo W Wu Z Huang K Zhao Q

Aims

Osteoporosis is characterized by decreased trabecular bone volume, and microarchitectural deterioration in the medullary cavity. Interleukin-19 (IL-19), a member of the IL-10 family, is an anti-inflammatory cytokine produced primarily by macrophages. The aim of our study was to investigate the effect of IL-19 on osteoporosis.

Methods

Blood and femoral bone marrow suspension IL-19 levels were first measured in the lipopolysaccharide (LPS)-induced bone loss model. Small interfering RNA (siRNA) was applied to knock down IL-19 for further validation. Thereafter, osteoclast production was stimulated with IL-19 in combination with mouse macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The effect of IL-19 was subsequently evaluated using tartrate-resistant acid phosphatase (TRAP) staining and quantitative real-time polymerase chain reaction (RT-qPCR). The effect of IL-19 on osteoprotegerin (OPG) was then assessed using in vitro recombinant IL-19 treatment of primary osteoblasts and MLO-Y4 osteoblast cell line. Finally, transient transfection experiments and chromatin immunoprecipitation (ChIP) experiments were used to examine the exact mechanism of action.