Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 10, Issue 1 | Pages 77 - 84
1 Jan 2021
Milstrey A Rosslenbroich S Everding J Raschke MJ Richards RG Moriarty TF Puetzler J

Aims

Biofilm formation is one of the primary reasons for the difficulty in treating implant-related infections (IRIs). Focused high-energy extracorporeal shockwave therapy (fhESWT), which is a treatment modality for fracture nonunions, has been shown to have a direct antibacterial effect on planktonic bacteria. The goal of the present study was to investigate the effect of fhESWT on Staphylococcus aureus biofilms in vitro in the presence and absence of antibiotic agents.

Methods

S. aureus biofilms were grown on titanium discs (13 mm × 4 mm) in a bioreactor for 48 hours. Shockwaves were applied with either 250, 500, or 1,000 impulses onto the discs surrounded by either phosphate-buffered saline or antibiotic (rifampin alone or in combination with nafcillin). The number of viable bacteria was determined by quantitative culture after sonication. Representative samples were taken for scanning electron microscopy.


Bone & Joint Research
Vol. 9, Issue 1 | Pages 1 - 14
1 Jan 2020
Stewart S Darwood A Masouros S Higgins C Ramasamy A

Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion.

Cite this article: Bone Joint Res 2019;9(1):1–14.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 335 - 341
1 Mar 2007
Albert J Meadeb J Guggenbuhl P Marin F Benkalfate T Thomazeau H Chalès G

In a prospective randomised trial of calcifying tendinitis of the rotator cuff, we compared the efficacy of dual treatment sessions delivering 2500 extracorporeal shock waves at either high- or low-energy, via an electromagnetic generator under fluoroscopic guidance. Patients were eligible for the study if they had more than a three-month history of calcifying tendinitis of the rotator cuff, with calcification measuring 10 mm or more in maximum dimension. The primary outcome measure was the change in the Constant and Murley Score.

A total of 80 patients were enrolled (40 in each group), and were re-evaluated at a mean of 110 (41 to 255) days after treatment when the increase in Constant and Murley score was significantly greater (t-test, p = 0.026) in the high-energy treatment group than in the low-energy group. The improvement from the baseline level was significant in the high-energy group, with a mean gain of 12.5 (−20.7 to 47.5) points (p < 0.0001). The improvement was not significant in the low-energy group. Total or subtotal resorption of the calcification occurred in six patients (15%) in the high-energy group and in two patients (5%) in the low-energy group.

High-energy shock-wave therapy significantly improves symptoms in refractory calcifying tendinitis of the shoulder after three months of follow-up, but the calcific deposit remains unchanged in size in the majority of patients.