Two-stage revision surgery for infected total knee replacement offers the highest rate of success for the elimination of infection. The use of articulating antibiotic-laden cement spacers during the first stage to eradicate infection also allows protection of the soft tissues against excessive scarring and stiffness. We have investigated the effect of
Aim. It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading. Materials and Methods. A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N. Results. There was no significant difference in the strains on the lateral cortex during HTO opening between the pilot hole and no-hole conditions. Similarly, the lateral cortex and fixation plate strains were not significantly different during
Objectives. Orthopaedic surgeons use stems in revision knee surgery to obtain
stability when metaphyseal bone is missing. No consensus exists
regarding stem size or method of fixation. This in vitro study
investigated the influence of stem length and method of fixation
on the pattern and level of relative motion at the bone–implant
interface at a range of functional flexion angles. Methods. A custom test rig using differential variable reluctance transducers
(DVRTs) was developed to record all translational and rotational
motions at the bone–implant interface. Composite femurs were used.
These were secured to permit variation in flexion angle from 0°
to 90°.
One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined. A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).Aims
Methods
The anterior cruciate ligament (ACL) is known to have a poor wound healing capacity, whereas other ligaments outside of the knee joint capsule such as the medial collateral ligament (MCL) apparently heal more easily. Plasmin has been identified as a major component in the synovial fluid that varies among patients. The aim of this study was to test whether plasmin, a component of synovial fluid, could be a main factor responsible for the poor wound healing capacity of the ACL. The effects of increasing concentrations of plasmin (0, 0.1, 1, 10, and 50 µg/ml) onto the wound closing speed (WCS) of primary ACL-derived ligamentocytes (ACL-LCs) were tested using wound scratch assay and time-lapse phase-contrast microscopy. Additionally, relative expression changes (quantitative PCR (qPCR)) of major LC-relevant genes and catabolic genes were investigated. The positive controls were 10% fetal calf serum (FCS) and platelet-derived growth factor (PDGF).Aims
Methods
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
Aseptic loosening of the femoral component is
an important indication for revision surgery in unicompartmental knee
replacement (UKR). A new design of femoral component with an additional
peg was introduced for the cemented Oxford UKR to increase its stability.
The purpose of this study was to compare the primary stability of
the two designs of component. Medial Oxford UKR was performed in 12 pairs of human cadaver
knees. In each pair, one knee received the single peg and one received
the twin peg design. Three dimensional micromotion and subsidence
of the component in relation to the bone was measured under cyclical
loading at flexion of 40° and 70° using an optical measuring system.
Wilcoxon matched pairs signed-rank test was performed to detect
differences between the two groups. There was no significant difference in the relative micromotion
(p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and
0.176, respectively) of the component between the two groups at
both angles of flexion. Both designs of component offered good strength
of fixation in this cadaver study. Cite this article:
Advances in polyethylene (PE) in total hip arthroplasty
have led to interest and increased use of highly crosslinked PE
(HXLPE) in total knee arthroplasty (TKA). Biomechanical data suggest
improved wear characteristics for HXLPE inserts over conventional
PE in TKA. Short-term results from registry data and few clinical
trials are promising. Our aim is to present a review of the history
of HXLPEs, the use of HXLPE inserts in TKA, concerns regarding potential mechanical
complications, and a thorough review of the available biomechanical
and clinical data. Cite this article:
The purpose of this study was to report the experience of dynamic
intraligamentary stabilisation (DIS) using the Ligamys device for
the treatment of acute ruptures of the anterior cruciate ligament
(ACL). Between March 2011 and April 2012, 50 patients (34 men and 16
women) with an acute rupture of the ACL underwent primary repair
using this device. The mean age of the patients was 30 years (18
to 50). Patients were evaluated for laxity, stability, range of
movement (ROM), Tegner, Lysholm, International Knee Documentation Committee
(IKDC) and visual analogue scale (VAS) scores over a follow-up period
of two years.Aims
Patients and Methods
Between 2003 and 2007, 99 knees in 77 patients
underwent opening wedge high tibial osteotomy. We evaluated the effect
of initial stable fixation combined with an artificial bone substitute
on the mid- to long-term outcome after medial opening-wedge high
tibial osteotomy (HTO) for medial compartmental osteoarthritis or
spontaneous osteonecrosis of the knee in 78 knees in 64 patients
available for review at a minimum of five years (mean age 68 years;
49 to 82). The mean follow-up was 6.5 years (5 to 10). The mean
Knee Society knee score and function score improved from 49.6 ( Opening-wedge HTO using a stable plate fixation system combined
with a bone substitute is a reliable procedure that provides excellent
results. Although this treatment might seem challenging for older
patients, our results strongly suggest that the results are equally
good. Cite this article:
There is little evidence examining the relationship between anatomical landmarks, radiological placement of the tunnels and long-term clinical outcomes following anterior cruciate ligament (ACL) reconstruction. The aim of this study was to investigate the reproducibility of intra-operative landmarks for placement of the tunnels in single-bundle reconstruction of the ACL using four-strand hamstring tendon autografts. Isolated reconstruction of the ACL was performed in 200 patients, who were followed prospectively for seven years with use of the International Knee Documentation Committee forms and radiographs. Taking 0% as the anterior and 100% as the posterior extent, the femoral tunnel was a mean of 86% ( The use of intra-operative landmarks resulted in reproducible placement of the tunnels and an excellent clinical outcome seven years after operation. Vertical inclination was associated with increased rotational instability and degenerative radiological changes, while rupture of the graft was associated with posterior placement of the tibial tunnel. If the osseous tunnels are correctly placed, single-bundle reconstruction of the ACL adequately controls both anteroposterior and rotational instability.
The optimum cementing technique for the tibial
component in cemented primary total knee replacement (TKR) remains
controversial. The technique of cementing, the volume of cement
and the penetration are largely dependent on the operator, and hence
large variations can occur. Clinical, experimental and computational
studies have been performed, with conflicting results. Early implant
migration is an indication of loosening. Aseptic loosening is the
most common cause of failure in primary TKR and is the product of
several factors. Sufficient penetration of cement has been shown
to increase implant stability. This review discusses the relevant literature regarding all aspects
of the cementing of the tibial component at primary TKR. Cite this article:
Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray. We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement. Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.