Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 897 - 901
1 Aug 2019
Konan S Alazzawi S Yoon B Cha Y Koo K

Ceramic bearings have several desirable properties, such as resistance to wear, hardness, and biocompatibility, that favour it as an articulating surface in hip arthroplasty. However, ceramic fracture remains a concern. We have reviewed the contemporary literature, addressing the factors that can influence the incidence of ceramic bearing surface fracture. Cite this article: Bone Joint J 2019;101-B:897–901


The Bone & Joint Journal
Vol. 100-B, Issue 1 | Pages 11 - 19
1 Jan 2018
Darrith B Courtney PM Della Valle CJ

Aims

Instability remains a challenging problem in both primary and revision total hip arthroplasty (THA). Dual mobility components confer increased stability, but there are concerns about the unique complications associated with these designs, as well as the long-term survivorship.

Materials and Methods

We performed a systematic review of all English language articles dealing with dual mobility THAs published between 2007 and 2016 in the MEDLINE and Embase electronic databases. A total of 54 articles met inclusion criteria for the final analysis of primary and revision dual mobility THAs and dual mobility THAs used in the treatment of fractures of the femoral neck. We analysed the survivorship and rates of aseptic loosening and of intraprosthetic and extra-articular dislocation.


Bone & Joint Research
Vol. 5, Issue 5 | Pages 162 - 168
1 May 2016
Athanasou NA

Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles.

Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162–168. DOI: 10.1302/2046-3758.55.BJR-2016-0086.