Aims. Proximal humeral fractures are the third most common fracture among the elderly. Complications associated with fixation include screw perforation, varus collapse, and avascular necrosis of the humeral head. To address these challenges, various augmentation techniques to increase medial column support have been developed. There are currently no recent studies that definitively establish the superiority of
Literature surrounding artificial intelligence (AI)-related applications for hip and knee arthroplasty has proliferated. However, meaningful advances that fundamentally transform the practice and delivery of joint arthroplasty are yet to be realized, despite the broad range of applications as we continue to search for meaningful and appropriate use of AI. AI literature in hip and knee arthroplasty between 2018 and 2021 regarding image-based analyses, value-based care, remote patient monitoring, and
Aims. Computer-based applications are increasingly being used by orthopaedic surgeons in their clinical practice. With the integration of technology in surgery,
Aims. The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. . Materials and Methods. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). . Results. Seven categories of biological interventions were identified:
growth factors, biomaterials, stem cells, gene therapy, autologous
tissue, biophysical/environmental, and pharmaceuticals. The methodological
quality of animal studies was moderate in 97%, but only 10% used
clinically relevant outcome measures. The most interventions in
clinical trials target the graft-tunnel interface and are applied
intraoperatively. Platelet-rich plasma is the most studied intervention,
but the clinical outcomes are mixed, and the methodological quality
of studies was suboptimal. Other biological therapies investigated
in clinical trials include: remnant-augmented ACLR; bone substitutes;
calcium phosphate-hybridized grafts; extracorporeal shockwave therapy;
and adult autologus non-cultivated stem cells. Conclusion. There is extensive preclinical research supporting the use of
biological therapies to
Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.Aims
Methods
The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone. Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.Aims
Methods
A balanced inflammatory response is important for successful fracture healing. The response of osteoporotic fracture healing is deranged and an altered inflammatory response can be one underlying cause. The objectives of this review were to compare the inflammatory responses between normal and osteoporotic fractures and to examine the potential effects on different healing outcomes. A systematic literature search was conducted with relevant keywords in PubMed, Embase, and Web of Science independently. Original preclinical studies and clinical studies involving the investigation of inflammatory response in fracture healing in ovariectomized (OVX) animals or osteoporotic/elderly patients with available full text and written in English were included. In total, 14 articles were selected. Various inflammatory factors were reported; of those tumour necrosis factor-α (TNF-α) and interleukin (IL)-6 are two commonly studied markers. Preclinical studies showed that OVX animals generally demonstrated higher systemic inflammatory response and poorer healing outcomes compared to normal controls (SHAM). However, it is inconclusive if the local inflammatory response is higher or lower in OVX animals. As for clinical studies, they mainly examine the temporal changes of the inflammatory stage or perform comparison between osteoporotic/fragility fracture patients and normal subjects without fracture. Our review of these studies emphasizes the lack of understanding that inflammation plays in the altered fracture healing response of osteoporotic/elderly patients. Taken together, it is clear that additional studies, preclinical and clinical, are required to dissect the regulatory role of inflammatory response in osteoporotic fracture healing. Cite this article:
Local antibiotics are used in the surgical management of foot infection in diabetic patients. This systematic review analyzes the available evidence of the use of local antibiotic delivery systems as an adjunct to surgery. Databases were searched to identify eligible studies and 13 were identified for inclusion.Aims
Materials and Methods
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge.