Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients. A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).Aims
Methods
Rotational acetabular osteotomy (RAO) has been reported to be effective in improving symptoms and preventing osteoarthritis (OA) progression in patients with mild to severe develomental dysplasia of the hip (DDH). However, some patients develop secondary OA even when the preoperative joint space is normal; determining who will progress to OA is difficult. We evaluated whether the preoperative cartilage condition may predict OA progression following surgery using T2 mapping MRI. We reviewed 61 hips with early-stage OA in 61 patients who underwent RAO for DDH. They underwent preoperative and five-year postoperative radiological analysis of the hip. Those with a joint space narrowing of more than 1 mm were considered to have 'OA progression'. Preoperative assessment of articular cartilage was also performed using 3T MRI with the T2 mapping technique. The region of interest was defined as the weightbearing portion of the acetabulum and femoral head.Aims
Methods
We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component, as assessed by morphometric geometrical analysis, and its reliability. A total of 52 Crowe IV hips (42 patients; seven male, 35 female; mean age 68.5 years (32 to 82)) and 50 normal hips (50 patients; eight male, 42 female; mean age 60.7 years (34 to 86)) undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiological inclination of 40° and anteversion of 20°. Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis.Aims
Patients and Methods
A borderline dysplastic hip can behave as either stable or unstable and this makes surgical decision making challenging. While an unstable hip may be best treated by acetabular reorientation, stable hips can be treated arthroscopically. Several imaging parameters can help to identify the appropriate treatment, including the Femoro-Epiphyseal Acetabular Roof (FEAR) index, measured on plain radiographs. The aim of this study was to assess the reliability and the sensitivity of FEAR index on MRI compared with its radiological measurement. The technique of measuring the FEAR index on MRI was defined and its reliability validated. A retrospective study assessed three groups of 20 patients: an unstable group of ‘borderline dysplastic hips’ with lateral centre edge angle (LCEA) less than 25° treated successfully by periacetabular osteotomy; a stable group of ‘borderline dysplastic hips’ with LCEA less than 25° treated successfully by impingement surgery; and an asymptomatic control group with LCEA between 25° and 35°. The following measurements were performed on both standardized radiographs and on MRI: LCEA, acetabular index, femoral anteversion, and FEAR index.Aims
Patients and Methods
Several studies have reported the safety and efficacy of subcapital
re-alignment for patients with slipped capital femoral epiphysis
(SCFE) using surgical dislocation of the hip and an extended retinacular
flap. Instability of the hip and dislocation as a consequence of
this surgery has only recently gained attention. We discuss this
problem with some illustrative cases. We explored the literature on the possible pathophysiological
causes and surgical steps associated with the risk of post-operative
instability and articular damage. In addition, we describe supplementary
steps that could be used to avoid these problems.Aims
Materials and Methods
Deep prosthetic joint infection remains an uncommon but serious complication of total hip replacement. We reviewed 24 patients with recalcitrant hip wounds following infected total hip replacement treated with either pedicled rectus femoris or vastus lateralis muscle flaps between 1998 and 2009. The mean age of the patients was 67.4 years (42 to 86) with ten men and 14 women. There had been a mean of four (1 to 8) previous attempts to close the wound. A total of 20 rectus femoris and five vastus lateralis flaps were used, with one of each type of flap failing and requiring further reconstruction. All patients had positive microbiology. At a mean follow-up of 47 months (9 to 128), 22 patients had a healed wound and two had a persistent sinus. The prosthesis had been retained in five patients. In the remainder it had been removed, and subsequently re-implanted in nine patients. Six patients continued to take antibiotics at final follow-up. This series demonstrates the effectiveness of pedicled muscle flaps in healing these infected wounds. The high number of previous debridements suggests that these flaps could have been used earlier.
Hip arthroscopy is particularly attractive in
children as it confers advantages over arthrotomy or open surgery,
such as shorter recovery time and earlier return to activity. Developments
in surgical technique and arthroscopic instrumentation have enabled
extension of arthroscopy of the hip to this age group. Potential
challenges in paediatric and adolescent hip arthroscopy include
variability in size, normal developmental change from childhood to
adolescence, and conditions specific to children and adolescents
and their various consequences. Treatable disorders include the
sequelae of traumatic and sports-related hip joint injuries, Legg–Calve–Perthes’
disease and slipped capital femoral epiphysis, and the arthritic
and septic hip. Intra-articular abnormalities are rarely isolated and
are often associated with underlying morphological changes. This review presents the current concepts of hip arthroscopy
in the paediatric and adolescent patient, covering clinical assessment
and investigation, indications and results of the experience to
date, as well as technical challenges and future directions.
There have been considerable recent advances in the understanding and management of femoroacetabular impingement and associated labral and chondral pathology. We have developed a classification system for acetabular chondral lesions. In our system, we use the six acetabular zones previously described by Ilizaliturri et al. The cartilage is then graded on a scale of 0 to 4 as follows: grade 0, normal articular cartilage lesions; grade 1, softening or wave sign; grade 2, cleavage lesion; grade 3, delamination; and grade 4, exposed bone. The site of the lesion is further classed as A, B or C based on whether the lesion is less than one-third of the distance from the acetabular rim to the cotyloid fossa, one-third to two-thirds of the same distance and greater than two-thirds of the distance, respectively. In order to validate the classification system, six surgeons graded ten video recordings of hip arthroscopy. Our findings showed a high intra-observer reliability of the classification system with an intraclass correlation coefficient of 0.81 and a high interobserver reliability with an intraclass correlation coefficient of 0.88. We have developed a simple reproducible classification system for lesions of the acetabular cartilage, which it is hoped will allow standardised documentation to be made of damage to the articular cartilage, particularly that associated with femoroacetabular impingement.
We reviewed the clinical outcome of arthroscopic femoral osteochondroplasty for cam femoroacetabular impingement performed between August 2005 and March 2009 in a series of 40 patients over 60 years of age. The group comprised 26 men and 14 women with a mean age of 65 years (60 to 82). The mean follow-up was 30 months (12 to 54). The mean modified Harris hip score improved by 19.2 points (95% confidence interval 13.6 to 24.9; p <
0.001) while the mean non-arthritic hip score improved by 15.0 points (95% confidence interval 10.9 to 19.1, p <
0.001). Seven patients underwent total hip replacement after a mean interval of 12 months (6 to 24 months) at a mean age of 63 years (60 to 70). The overall level of satisfaction was high with most patients indicating that they would undergo similar surgery in the future to the contralateral hip, if indicated. No serious complications occurred. Arthroscopic femoral osteochondroplasty performed in selected patients over 60 years of age, who have hip pain and mechanical symptoms resulting from cam femoroacetabular impingement, is beneficial with a minimal risk of complications at a mean follow-up of 30 months.
Open reduction of the prominence at the femoral head-neck junction in femoroacetabular impingement has become an established treatment for this condition. We report our experience of arthroscopically-assisted treatment of femoroacetabular impingement secondary to paediatric hip disease in 14 hips in 13 consecutive patients (seven women, six men) with a mean age of 30.6 years (24 to 39) at the time of surgery. The mean follow-up was 2.5 years (2 to 4). Radiologically, 13 hips had successful restoration of the normal geometry and only one had a residual deformity. The mean increase in the Western Ontario McMasters Osteoarthritis Index for the series at the last follow-up was 9.6 points (4 to 14). No patient developed avascular necrosis or sustained a fracture of the femoral neck or any other complication. These findings suggest that femoroacetabular impingement associated with paediatric hip disease can be treated safely by arthroscopic techniques.
We have undertaken a prospective, randomised study to compare conservation of acetabular bone after total hip replacement and resurfacing arthroplasty of the hip. We randomly assigned 210 hips to one of the two treatment groups. Uncemented, press-fit acetabular components were used for both. No significant difference was found in the mean diameter of acetabular implant inserted in the groups (54.74 mm for total hip replacement and 54.90 mm for resurfacing arthroplasty). In seven resurfacing procedures (6.8%), the surgeon used a larger size of component in order to match the corresponding diameter of the femoral component. With resurfacing arthroplasty, conservation of bone is clearly advantageous on the femoral side. Our study has shown that, with a specific design of acetabular implant and by following a careful surgical technique, removal of bone on the acetabular side is comparable with that of total hip replacement.
Labral tears are commonly associated with femoroacetabular impingement. We reviewed 151 patients (156 hips) with femoroacetabular impingement and labral tears who had been treated arthroscopically. These were subdivided into those who had undergone a labral repair (group 1) and those who had undergone resection of the labrum (group 2). In order to ensure the groups were suitably matched for comparison of treatment effects, patients with advanced degenerative changes (Tönnis grade >
2, lateral sourcil height <
2 mm and Outerbridge grade 4 changes in the weight-bearing area of the femoral head) were excluded, leaving 96 patients (101 hips) in the study. At a mean follow-up of 2.44 years (2 to 4), the mean modified Harris hip score in the labral repair group (group 1, 69 hips) improved from 60.2 (24 to 85) pre-operatively to 93.6 (55 to 100), and in the labral resection group (group 2, 32 hips) from 62.8 (29 to 96) pre-operatively to 88.8 (35 to 100). The mean modified Harris hip score in the labral repair group was 7.3 points greater than in the resection group (p = 0.036, 95% confidence interval 0.51 to 14.09). Labral detachments were found more frequently in the labral repair group and labral flap tears in the resection group. No patient in our study group required a subsequent hip replacement during the period of follow-up. This study shows that patients without advanced degenerative changes in the hip can achieve significant improvement in their symptoms after arthroscopic treatment of femoroacetabular impingement. Where appropriate, labral repair provides a superior result to labral resection.
Although the association between femoroacetabular impingement and osteoarthritis is established, it is not yet clear which hips have the greatest likelihood to progress rapidly to end-stage disease. We investigated the effect of several radiological parameters, each indicative of a structural aspect of the hip joint, on the progression of osteoarthritis. Pairs of plain anteroposterior pelvic radiographs, taken at least ten years apart, of 43 patients (43 hips) with a pistol-grip deformity of the femur and mild (Tönnis grade 1) or moderate (Tönnis grade 2) osteoarthritis were reviewed. Of the 43 hips, 28 showed evidence of progression of osteoarthritis. There was no significant difference in the prevalence of progression between hips with initial Tönnis grade 1 or grade 2 osteoarthritis (p = 0.31). Comparison of the hips with and without progression of arthritis revealed a significant difference in the mean medial proximal femoral angle (81° vs 87°, p = 0.004) and the presence of the posterior wall sign (39% vs 7%, p = 0.02) only. A logistic regression model was constructed to predict the influence of these two variables in the development of osteoarthritis. Mild to moderate osteoarthritis in hips with a pistol-grip deformity will not progress rapidly in all patients. In one-third, progression will take more than ten years to manifest, if ever. The individual geometry of the proximal femur and acetabulum partly influences this phenomenon. A hip with cam impingement is not always destined for end-stage arthritic degeneration.
Between January 1998 and December 1998, 82 consecutive patients (86 hips) underwent total hip arthroplasty using a trabecular metal monoblock acetabular component. All patients had a clinical and radiological follow-up evaluation at six, 12 and 24 weeks, 12 months, and then annually thereafter. On the initial post-operative radiograph 25 hips had a gap between the outer surface of the component and the acetabular host bed which ranged from 1 to 5 mm. All patients were followed up clinically and radiologically for a mean of 7.3 years (7 to 7.5). The 25 hips with the 1 to 5 mm gaps were studied for component migration at two years using the Einzel-Bild-Roentgen-Analyse (EBRA) digital measurement method. At 24 weeks all the post-operative gaps were filled with bone and no acetabular component had migrated. The radiographic outcome of all 86 components showed no radiolucent lines and no evidence of lysis. No acetabular implant was revised. There were no dislocations or other complications. The bridging of the interface gaps (up to 5 mm) by the trabecular metal monoblock acetabular component indicates the strong osteoconductive, and possibly osteoinductive, properties of trabecular metal.