We studied the sensory afferent properties of normal, immobilised and inflamed rat knees by recording the activity of the medial articular nerve (MAN). When the knee was inflamed by kaolin-carrageenan or immobilised for six weeks, MAN activity significantly increased during rest and continuous passive motion (CPM). The maximal discharge rate tended to increase depending on the angular velocity of the CPM. When the knees were then rested for one hour before again starting CPM, activity was further increased at the initial CPM cycle, the ‘post-rest effect’. Analysis of the conduction velocity showed that 94% and 66% of spike units on the recorded discharge of the immobilised and inflamed knees, respectively, belonged to fine nerve fibres. Our findings show that the sensory receptors in the knee are sensitised in a similar manner by immobilisation and by inflammation, suggesting a relationship to pain. The post-rest effect may be related to a characteristic symptom of osteoarthritis called ‘starting pain’.