Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 7, Issue 7 | Pages 468 - 475
1 Jul 2018
He Q Sun H Shu L Zhu Y Xie X Zhan Y Luo C

Objectives. Researchers continue to seek easier ways to evaluate the quality of bone and screen for osteoporosis and osteopenia. Until recently, radiographic images of various parts of the body, except the distal femur, have been reappraised in the light of dual-energy X-ray absorptiometry (DXA) findings. The incidence of osteoporotic fractures around the knee joint in the elderly continues to increase. The aim of this study was to propose two new radiographic parameters of the distal femur for the assessment of bone quality. Methods. Anteroposterior radiographs of the knee and bone mineral density (BMD) and T-scores from DXA scans of 361 healthy patients were prospectively analyzed. The mean cortical bone thickness (CBTavg) and the distal femoral cortex index (DFCI) were the two parameters that were proposed and measured. Intra- and interobserver reliabilities were assessed. Correlations between the BMD and T-score and these parameters were investigated and their value in the diagnosis of osteoporosis and osteopenia was evaluated. Results. The DFCI, as a ratio, had higher reliability than the CBTavg. Both showed significant correlation with BMD and T-score. When compared with DFCI, CBTavg showed better correlation and was better for predicting osteoporosis and osteopenia. Conclusion. The CBTavg and DFCI are simple and reliable screening tools for the prediction of osteoporosis and osteopenia. The CBTavg is more accurate but the DFCI is easier to use in clinical practice. Cite this article: Q-F. He, H. Sun, L-Y. Shu, Y. Zhu, X-T. Xie, Y. Zhan, C-F. Luo. Radiographic predictors for bone mineral loss: Cortical thickness and index of the distal femur. Bone Joint Res 2018;7:468–475. DOI: 10.1302/2046-3758.77.BJR-2017-0332.R1


The Bone & Joint Journal
Vol. 98-B, Issue 11 | Pages 1489 - 1496
1 Nov 2016
Konan S Sandiford N Unno F Masri BS Garbuz DS Duncan CP

Fractures around total knee arthroplasties pose a significant surgical challenge. Most can be managed with osteosynthesis and salvage of the replacement. The techniques of fixation of these fractures and revision surgery have evolved and so has the assessment of outcome. This specialty update summarises the current evidence for the classification, methods of fixation, revision surgery and outcomes of the management of periprosthetic fractures associated with total knee arthroplasty.

Cite this article: Bone Joint J 2016;98-B:1489–96.


The Bone & Joint Journal
Vol. 97-B, Issue 3 | Pages 337 - 345
1 Mar 2015
Jaroma AVJ Soininvaara TA Kröger H

Total knee arthroplasty (TKA) is known to lead to a reduction in periprosthetic bone mineral density (BMD). In theory, this may lead to migration, instability and aseptic loosening of the prosthetic components. Bisphosphonates inhibit bone resorption and may reduce this loss in BMD. We hypothesised that treatment with bisphosphonates and calcium would lead to improved BMD and clinical outcomes compared with treatment with calcium supplementation alone following TKA. A total of 26 patients, (nine male and 17 female, mean age 67 years) were prospectively randomised into two study groups: alendronate and calcium (bisphosphonate group, n = 14) or calcium only (control group, n = 12). Dual energy X-ray absorptiometry (DEXA) measurements were performed post-operatively, and at three months, six months, one, two, four, and seven years post-operatively.

Mean femoral metaphyseal BMD was significantly higher in the bisphosphonate group compared with controls, up to four years following surgery in some areas of the femur (p = 0.045). BMD was observed to increase in the lateral tibial metaphysis in the bisphosphonate group until seven years (p = 0.002), and was significantly higher than that observed in the control group throughout (p = 0.024). There were no significant differences between the groups in the central femoral metaphyseal, tibial medial metaphyseal or diaphyseal regions of interest (ROI) of either the femur or tibia.

Bisphosphonate treatment after TKA may be of benefit for patients with poor bone quality. However, further studies with a larger number of patients are necessary to assess whether this is clinically beneficial.

Cite this article: Bone Joint J 2015;97-B:337–45.