Femoral revision after cemented total hip replacement
(THR) might include technical difficulties, following essential cement
removal, which might lead to further loss of bone and consequently
inadequate fixation of the subsequent revision stem. . Femoral impaction allografting has been widely used in revision
surgery for the acetabulum, and subsequently for the femur. In combination
with a primary cemented stem,
Aims. We compared the clinical outcomes of curved intertrochanteric varus osteotomy (CVO) with bone
We report the results of cancellous femoral
We describe the results of 81 consecutive revision
total hip replacements with
This review summarises the technique of impaction
grafting with mesh augmentation for the treatment of uncontained
acetabular defects in revision hip arthroplasty. The ideal acetabular revision should restore bone stock, use
a small socket in the near-anatomic position, and provide durable
fixation. Impaction bone grafting, which has been in use for over
40 years, offers the ability to achieve these goals in uncontained
defects. The precepts of modern, revision
We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation. A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen. These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported.
Aims. This single-centre observational study aimed to describe the results of extensive bone
Aims. Femoral impaction bone grafting was first developed in 1987 using
morselised cancellous bone graft impacted into the femoral canal
in combination with a cemented, tapered, polished stem. We describe
the evolution of this technique and instrumentation since that time. . Patients and Methods. Between 1987 and 2005, 705 revision total hip arthroplasties
(56 bilateral) were performed with femoral
We reviewed retrospectively the outcome of the treatment by
Aims. The aim of this study was to compare the incidence of aseptic
loosening after the use of a cemented acetabular component and a
Trabecular Metal (TM) acetabular component (Zimmer Inc., Warsaw,
Indiana) at acetabular revision with bone
Revision total hip arthroplasty (THA) is projected
to increase by 137% from the years 2005 to 2030. Reconstruction of
the femur with massive bone loss can be a formidable undertaking.
The goals of revision surgery are to create a stable construct,
preserve bone and soft tissues, augment deficient host bone, improve
function, provide a foundation for future surgery, and create a
biomechanically restored hip. Options for treatment of the compromised femur
include: resection arthroplasty, allograft prosthetic composite
(APC), proximal femoral replacement, cementless fixation with a
modular tapered fluted stem, and
The clinical and radiological results of 50 consecutive acetabular reconstructions in 48 patients using
A two-stage procedure was carried out on 57 patients with confirmed infection in a hip replacement. Allograft bone was used in the second stage. Pathogenic organisms were identified in all patients. In stage 1, the prosthesis was removed together with infected tissue. Antibiotics were added to customised cement beads. Systemic antibiotics were not used. At the second stage, 45 of the patients had either acetabular
We describe 129 consecutive revision total hip replacements using a Charnley-Kerboull femoral component of standard length with impaction allografting. The mean follow-up was 8.2 years (2 to 16). Additionally, extramedullary reinforcement was performed using struts of cortical allograft in 49 hips and cerclage wires in 30. There was one intra-operative fracture of the femur but none later. Two femoral components subsided by 5 mm and 8 mm respectively, and were considered to be radiological failures. No further revision of a femoral component was required. The rate of survival of the femoral component at nine years, using radiological failure as the endpoint, was 98%. Our study showed that
Bone allografts can store and release high levels of vancomycin. We present our results of a two-stage treatment for infected hip arthroplasty with acetabular and femoral
Femoral impaction bone allografting has been developed as a means of restoring bone stock in revision total hip replacement. We report the results of 75 consecutive patients (75 hips) with a mean age of 68 years (35 to 87) who underwent
The aim of this study was to assess the clinical and radiological results of patients who were revised using a custom-made triflange acetabular component (CTAC) for component loosening and pelvic discontinuity (PD) after previous total hip arthroplasty (THA). Data were extracted from a single centre prospective database of patients with PD who were treated with a CTAC. Patients were included if they had a follow-up of two years. The Hip Disability and Osteoarthritis Outcome Score (HOOS), modified Oxford Hip Score (mOHS), EurQol EuroQoL five-dimension three-level (EQ-5D-3L) utility, and Numeric Rating Scale (NRS), including visual analogue score (VAS) for pain, were gathered at baseline, and at one- and two-year follow-up. Reasons for revision, and radiological and clinical complications were registered. Trends over time are described and tested for significance and clinical relevance.Aims
Methods
Loss of bone stock is a major problem in revision surgery of the hip. Impaction bone grafting of the femur is frequently used when dealing with deficient bone stock. In this retrospective study a consecutive series of 68 patients (69 hips) who had revision of a hip replacement with femoral
We identified 1305 femoral impaction bone grafting revisions using the Exeter stem performed between 1989 and 2002 in 30 hospitals throughout Sweden. There were 1188 patients with a mean age of 71 years (29 to 94) followed up for between five and 18 years. The participating departments reported 70 further revisions in total, of which 57 could also be identified on the Swedish National Arthroplasty Registry. Kaplan-Meier survivorship for all causes of failure was 94.0% (95% confidence interval (CI) 92 to 96) for women and 94.7% (95% CI, 92 to 96) for men at 15 years. Survivorship at 15 years for aseptic loosening was 99.1% (95% CI 98.4 to 99.5), for infection 98.6% (95% CI 97.6 to 99.2), for subsidence 99.0% (95% CI 98.2 to 99.4) and for fracture 98.7% (95% CI 97.9 to 99.2). Statistically significant predictors of failure were the year in which revision was conducted (p <
0.001). The number of previous revisions was slightly above the level of signifance (p = 0.056). Age, gender, the length of the stem and previous septic loosening were not predictors of failure (p = 0.213, p = 0.399, p = 0.337, p = 0.687, respectively). The difference in survivorship between high- and low-volume departments was only 3% at ten years. We conclude that impaction bone grafting with the Exeter stem has an excellent long-term survivorship following revision arthroplasty. The technique of
The aim of this study was to determine the outcome of all primary total hip arthroplasties (THAs) and their subsequent revision procedures in patients aged under 50 years performed at our institution. All 1,049 primary THAs which were undertaken in 860 patients aged under 50 years between 1988 and 2018 in our tertiary care institution were included. We used cemented implants in both primary and revision surgery. Impaction bone grafting was used in patients with acetabular or femoral bone defects. Kaplan-Meier analyses were used to determine the survival of primary and revision THA with the endpoint of revision for any reason, and of revision for aseptic loosening.Aims
Methods
The Scottish National Blood Transfusion Service is the main provider of bone for grafting in Scotland. Bone is procured only from live donors, following very strict selection criteria, and we have investigated whether the amount being collected was adequate. Our current harvest of approximately 1700 femoral heads per year is shown not to be enough to meet the future demand for revision surgery of the hip. Many more of these operations are being undertaken, and
After failed acetabular fractures, total hip arthroplasty (THA) is a challenging procedure and considered the gold standard treatment. The complexity of the procedure depends on the fracture pattern and the initial fracture management. This study’s primary aim was to evaluate patient-reported outcome measures (PROMs) for patients who underwent delayed uncemented acetabular THA after acetabular fractures. The secondary aims were to assess the radiological outcome and the incidence of the associated complications in those patients. A total of 40 patients underwent cementless acetabular THA following failed treatment of acetabular fractures. The postoperative clinical and radiological outcomes were evaluated for all the cohort.Aims
Methods
The Exeter V40 cemented polished tapered stem system has demonstrated excellent long-term outcomes. This paper presents a systematic review of the existing literature and reports on a large case series comparing implant fractures between the Exeter V40 series; 125 mm and conventional length stem systems. A systematic literature search was performed adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. In parallel, we performed a retrospective single centre study of Exeter V40 femoral stem prosthetic fractures between April 2003 and June 2020.Aims
Methods
There is a paucity of long-term studies analyzing risk factors for failure after single-stage revision for periprosthetic joint infection (PJI) following total hip arthroplasty (THA). We report the mid- to long-term septic and non-septic failure rate of single-stage revision for PJI after THA. We retrospectively reviewed 88 cases which met the Musculoskeletal Infection Society (MSIS) criteria for PJI. Mean follow-up was seven years (1 to 14). Septic failure was diagnosed with a Delphi-based consensus definition. Any reoperation for mechanical causes in the absence of evidence of infection was considered as non-septic failure. A competing risk regression model was used to evaluate factors associated with septic and non-septic failures. A Kaplan-Meier estimate was used to analyze mortality.Aims
Methods
Periprosthetic fractures (PPFs) around cemented taper-slip femoral prostheses often result in a femoral component that is loose at the prosthesis-cement interface, but where the cement-bone interface remains well-fixed and bone stock is good. We aim to understand how best to classify and manage these fractures by using a modification of the Vancouver classification. We reviewed 87 PPFs. Each was a first episode of fracture around a cemented femoral component, where surgical management consisted of revision surgery. Data regarding initial injury, intraoperative findings, and management were prospectively collected. Patient records and serial radiographs were reviewed to determine fracture classification, whether the bone cement was well fixed (B2W) or loose (B2L), and time to fracture union following treatment.Aims
Methods
The aim of this study was to report the medium-term outcomes of impaction bone allograft and fibular grafting for osteonecrosis of the femoral head (ONFH) and to define the optimal indications. A total of 67 patients (77 hips) with ONFH were enrolled in a single centre retrospective review. Success of the procedure was assessed using the Harris Hip Score (HHS) and rate of revision to total hip arthroplasty (THA). Risk factors were studied, including age, aetiology, duration of hip pain, as well as two classification systems (Association Research Circulation Osseous (ARCO) and Japanese Investigation Committee (JIC) systems).Aims
Methods
Complex total hip arthroplasty (THA) with subtrochanteric shortening osteotomy is necessary in conditions other than developmental dysplasia of the hip (DDH) and septic arthritis sequelae with significant proximal femur migration. Our aim was to evaluate the hip centre restoration with THAs in these hips. In all, 27 THAs in 25 patients requiring THA with femoral shortening between 2012 and 2019 were assessed. Bilateral shortening was required in two patients. Subtrochanteric shortening was required in 14 out of 27 hips (51.9%) with aetiology other than DDH or septic arthritis. Vertical centre of rotation (VCOR), horizontal centre of rotation, offset, and functional outcome was calculated. The mean followup was 24.4 months (5 to 92 months).Aims
Methods
We previously reported the long-term results of the cementless Duraloc-Profile total hip arthroplasty (THA) system in a 12- to 15-year follow-up study. In this paper, we provide an update on the clinical and radiological results of a previously reported cohort of patients at 23 to 26 years´ follow-up. Of the 99 original patients (111 hips), 73 patients (82 hips) with a mean age of 56.8 years (21 to 70) were available for clinical and radiological study at a minimum follow-up of 23 years. There were 40 female patients (44 hips) and 33 male patients (38 hips).Aims
Patients and Methods
We evaluated the accuracy with which a custom-made
acetabular component could be positioned at revision arthroplasty
of the hip in patients with a Paprosky type 3 acetabular defect. A total of 16 patients with a Paprosky type 3 defect underwent
revision surgery using a custom-made trabecular titanium implant.
There were four men and 12 women with a median age of 67 years (48
to 79). The planned inclination (INCL), anteversion (AV), rotation
and centre of rotation (COR) of the implant were compared with the post-operative
position using CT scans. A total of seven implants were malpositioned in one or more parameters:
one with respect to INCL, three with respect to AV, four with respect
to rotation and five with respect to the COR. To the best of our knowledge, this is the first study in which
CT data acquired for the pre-operative planning of a custom-made
revision acetabular implant have been compared with CT data on the
post-operative position. The results are encouraging. Cite this article:
The outcome of 219 revision total hip arthroplasties
(THAs) in 98 male and 121 female patients, using 137 long length
and 82 standard length cemented collarless double-taper femoral
stems in 211 patients, with a mean age of 72 years (30 to 90) and
mean follow-up of six years (two to 18) have been described previously.
We have extended the follow-up to a mean of 13 years (8 to 20) in
this cohort of patients in which the pre-operative bone deficiency Paprosky
grading was IIIA or worse in 79% and 73% of femurs with long and
standard stems, respectively. For the long stem revision group, survival to re-revision for
aseptic loosening at 14 years was 97% (95% confidence interval (CI)
91 to 100) and in patients aged >
70 years, survival was 100%. Two
patients (two revisions) were lost to follow-up and 86 patients
with 88 revisions had died. Worst-case analysis for survival to
re-revision for aseptic loosening at 14 years was 95% (95% CI 89
to 100) and 99% (95% CI 96 to 100) for patients aged >
70 years. One
additional long stem was classified as loose radiographically but
not revised. For the standard stem revision group, survival to re-revision
for aseptic loosening at 14 years was 91% (95% CI 83 to 99). No
patients were lost to follow-up and 49 patients with 51 hips had
died. No additional stems were classified as loose radiographically. Femoral revision using a cemented collarless double-taper stem,
particularly with a long length stem, and in patients aged >
70
years, continues to yield excellent results up to 20 years post-operatively,
including in hips with considerable femoral metaphyseal bone loss. Cite this article:
We determined the midterm survival, incidence
of peri-prosthetic fracture and the enhancement of the width of
the femur when combining struts and impacted bone allografts in
24 patients (25 hips) with severe femoral bone loss who underwent
revision hip surgery. The pre-operative diagnosis was aseptic loosening
in 16 hips, second-stage reconstruction in seven, peri-prosthetic
fracture in one and stem fracture in one hip. A total of 14 hips
presented with an Endoklinik grade 4 defect and 11 hips a grade
3 defect. The mean pre-operative Merle D’Aubigné and Postel score
was 5.5 points (1 to 8). The survivorship was 96% (95% confidence interval 72 to 98) at
a mean of 54.5 months (36 to 109). The mean functional score was
17.3 points (16 to 18). One patient in which the strut did not completely
bypass the femoral defect was further revised using a long cemented
stem due to peri-prosthetic fracture at six months post-operatively.
The mean subsidence of the stem was 1.6 mm (1 to 3). There was no
evidence of osteolysis, resorption or radiolucencies during follow-up
in any hip. Femoral width was enhanced by a mean of 41% (19% to
82%). A total of 24 hips had partial or complete bridging of the
strut allografts. This combined biological method was associated with a favourable
survivorship, a low incidence of peri-prosthetic fracture and enhancement
of the width of the femur in revision total hip replacement in patients
with severe proximal femoral bone loss.
We report the clinical and radiographic outcomes
of 208 consecutive femoral revision arthroplasties performed in 202
patients (119 women, 83 men) between March 1991 and December 2007
using the X-change Femoral Revision System, fresh-frozen morcellised
allograft and a cemented polished Exeter stem. All patients were
followed prospectively. The mean age of the patients at revision
was 65 years (30 to 86). At final review in December 2013 a total
of 130 patients with 135 reconstructions (64.9%) were alive and
had a non re-revised femoral component after a mean follow-up of
10.6 years (4.7 to 20.9). One patient was lost to follow-up at six
years, and their data were included up to this point.
Re-operation for any reason was performed in 33 hips (15.9%), in
13 of which the femoral component was re-revised (6.3%). The mean
pre-operative Harris hip score was 52 (19 to 95) (n = 73) and improved
to 80 (22 to 100) (n = 161) by the last follow-up. Kaplan–Meier
survival with femoral re-revision for any reason as the endpoint
was 94.9% (95% confidence intervals (CI) 90.2 to 97.4) at ten years;
with femoral re-revision for aseptic loosening as the endpoint it was
99.4% (95% CI 95.7 to 99.9); with femoral re-operation for any reason
as the endpoint it was 84.5% (95% CI 78.3 to 89.1); and with subsidence ≥ 5
mm it was 87.3% (95% CI 80.5 to 91.8). Femoral revision with the
use of impaction allograft bone grafting and a cemented polished
stem results in a satisfying survival rate at a mean of ten years’ follow-up. Cite this article:
Impaction bone grafting for the reconstitution
of bone stock in revision hip surgery has been used for nearly 30 years.
Between 1995 and 2001 we used this technique in acetabular reconstruction,
in combination with a cemented component, in 304 hips in 292 patients
revised for aseptic loosening. The only additional supports used
were stainless steel meshes placed against the medial wall or laterally
around the acetabular rim to contain the graft. All Paprosky grades
of defect were included. Clinical and radiographic outcomes were
collected in surviving patients at a minimum of ten years after
the index operation. Mean follow-up was 12.4 years ( Cite this article:
The ‘jumbo’ acetabular component is now commonly
used in acetabular revision surgery where there is extensive bone
loss. It offers high surface contact, permits weight bearing over
a large area of the pelvis, the need for bone grafting is reduced
and it is usually possible to restore centre of rotation of the
hip. Disadvantages of its use include a technique in which bone
structure may not be restored, a risk of excessive posterior bone
loss during reaming, an obligation to employ screw fixation, limited
bone ingrowth with late failure and high hip centre, leading to increased
risk of dislocation. Contraindications include unaddressed pelvic
dissociation, inability to implant the component with a rim fit,
and an inability to achieve screw fixation. Use in acetabulae with
<
50% bone stock has also been questioned. Published results
have been encouraging in the first decade, with late failures predominantly because
of polyethylene wear and aseptic loosening. Dislocation is the most
common complication of jumbo acetabular revisions, with an incidence
of approximately 10%, and often mandates revision. Based on published results,
a hemispherical component with an enhanced porous coating, highly
cross-linked polyethylene, and a large femoral head appears to represent
the optimum tribology for jumbo acetabular revisions. Cite this article:
In developmental dysplasia of the hip (DDH),
a bone defect is often observed superior to the acetabulum after
the reconstruction at the level of the true acetabulum during total
hip replacement (THR). However, the essential amount of uncemented
acetabular component coverage required for a satisfactory outcome
remains controversial. The purpose of this study was to assess the
stability and function of acetabular components with a lack of coverage >
30% (31% to 50%). A total of 760 DDH patients underwent THR with
acetabular reconstruction at the level of the true floor. Lack of
coverage above the acetabular component of >
30% occurred in 56
patients. Intra-operatively, autogenous morcellised bone grafts
were used to fill the uncovered portion. Other than two screws inserted through
the acetabular shell, no additional structural supports were used
in these hips. In all, four patients were lost to follow-up. Therefore,
52 patients (52 hips, 41 women and 11 men) with a mean age of 60.1
years (42 to 78) were available for this study at a mean of 4.8
years (3 to 7). There were no instances of prosthesis revision or
marked loosening during the follow-up. The Harris hip score improved
from a mean of 40.7 points ( Cite this article:
The removal of all prosthetic material and a
two-stage revision procedure is the established standard management of
an infected total hip replacement (THR). However, the removal of
well-fixed femoral cement is time-consuming and can result in significant
loss of bone stock and femoral shaft perforation or fracture. We
report our results of two-stage revision THR for treating infection,
with retention of the original well-fixed femoral cement mantle
in 15 patients, who were treated between 1989 and 2002. Following
partial excision arthroplasty, patients received local and systemic
antibiotics and underwent reconstruction and re-implantation at
a second-stage procedure, when the infection had resolved. The mean follow-up of these 15 patients was 82 months (60 to
192). Two patients had positive microbiology at the second stage
and were treated with six weeks of appropriate antibiotics; one
of these developed recurrent infection requiring further revision.
Successful eradication of infection was achieved in the remaining
14 patients. We conclude that when two-stage revision is used for the treatment
of peri-prosthetic infection involving a THR, a well-fixed femoral
cement mantle can be safely left
We present the results of 62 consecutive acetabular
revisions using impaction bone grafting and a cemented polyethylene
acetabular component in 58 patients (13 men and 45 women) after
a mean follow-up of 27 years (25 to 30). All patients were prospectively
followed. The mean age at revision was 59.2 years (23 to 82). We performed Kaplan–Meier (KM) analysis and also a Competing
Risk (CR) analysis because with long-term follow-up, the presence
of a competing event (i.e. death) prevents the occurrence of the
endpoint of re-revision. A total of 48 patients (52 hips) had died or had been re-revised
at final review in March 2011. None of the deaths were related to
the surgery. The mean Harris hip score of the ten surviving hips
in ten patients was 76 points (45 to 99). The KM survivorship at 25 years for the endpoint ‘re-revision
for any reason’ was 58.0% (95% confidence interval (CI) 38 to 73)
and for ‘re-revision for aseptic loosening’ 72.1% (95% CI 51 to
85). With the CR analysis we calculated the KM analysis overestimates
the failure rate with respectively 74% and 93% for these endpoints.
The current study shows that acetabular impaction bone grafting
revisions provide good clinical results at over 25 years. Cite this article:
Periprosthetic femoral fracture (PFF) is a potentially
devastating complication after total hip arthroplasty, with historically
high rates of complication and failure because of the technical
challenges of surgery, as well as the prevalence of advanced age
and comorbidity in the patients at risk. This study describes the short-term outcome after revision arthroplasty
using a modular, titanium, tapered, conical stem for PFF in a series
of 38 fractures in 37 patients. The mean age of the cohort was 77 years (47 to 96). A total of
27 patients had an American Society of Anesthesiologists grade of
at least 3. At a mean follow-up of 35 months (4 to 66) the mean
Oxford Hip Score (OHS) was 35 (15 to 48) and comorbidity was significantly
associated with a poorer OHS. All fractures united and no stem needed
to be revised. Three hips in three patients required further surgery
for infection, recurrent PFF and recurrent dislocation and three
other patients required closed manipulation for a single dislocation.
One stem subsided more than 5 mm but then stabilised and required
no further intervention. In this series, a modular, tapered, conical stem provided a versatile
reconstruction solution with a low rate of complications. Cite this article:
We are currently facing an epidemic of periprosthetic
fractures around the hip. They may occur either during surgery or
post-operatively. Although the acetabulum may be involved, the femur
is most commonly affected. We are being presented with new, difficult
fracture patterns around cemented and cementless implants, and we
face the challenge of an elderly population who may have grossly
deficient bone and may struggle to rehabilitate after such injuries.
The correct surgical management of these fractures is challenging.
This article will review the current choices of implants and techniques
available to deal with periprosthetic fractures of the femur. Cite this article:
We report the outcome of the flangeless, cemented all-polyethylene Exeter acetabular component at a mean of 14.6 years (10 to 17) after operation. Of the 263 hips in 243 patients, 122 prostheses are still The cemented all-polyethylene Exeter acetabular component has an excellent long-term survivorship.
A total of 31 patients, (20 women, 11 men; mean
age 62.5 years old; 23 to 81), who underwent conversion of a Girdlestone
resection-arthroplasty (RA) to a total hip replacement (THR) were
compared with 93 patients, (60 women, 33 men; mean age 63.4 years
old; 20 to 89), who had revision THR surgery for aseptic loosening
in a retrospective matched case-control study. Age, gender and the
extent of the pre-operative bone defect were similar in all patients.
Mean follow-up was 9.3 years (5 to 18). Pre-operative function and range of movement were better in the
control group (p = 0.01 and 0.003, respectively) and pre-operative
leg length discrepancy (LLD) was greater in the RA group (p <
0.001). The post-operative clinical outcome was similar in both
groups except for mean post-operative LLD, which was greater in
the study group (p = 0.003). There was a significant interaction
effect for LLD in the study group (p <
0.001). A two-way analysis
of variance showed that clinical outcome depended on patient age
(patients older than 70 years old had worse pre-operative pain,
p = 0.017) or bone defect (patients with a large acetabular bone
defect had higher LLD, p = 0.006, worse post-operative function
p = 0.009 and range of movement, p = 0.005), irrespective of the
group. Despite major acetabular and femoral bone defects requiring complex
surgical reconstruction techniques, THR after RA shows a clinical
outcome similar to those obtained in aseptic revision surgery for
hips with similar sized bone defects. Cite this article:
We report the results at a mean of 24.3 years
(20 to 32) of 61 previously reported consecutive total hip replacements carried
out on 44 patients with severe congenital hip disease, performed
with reconstruction of the acetabulum with an impaction grafting
technique known as cotyloplasty. The mean age of the patients at
operation was 46.7 years (23 to 68) and all were women. The patients
were followed post-operatively for a mean of 24.3 years (20 to 32), using
the Merle d’Aubigné and Postel scoring system as modified by Charnley,
and with serial radiographs. At the time of the latest follow-up,
28 acetabular components had been revised because of aseptic loosening
at a mean of 15.9 years (6 to 26), and one at 40 days after surgery
because of repeated dislocations. The overall survival rate for aseptic
failure of the acetabular component at ten years was 93.1% (95%
confidence interval (CI) 86.5 to 96.7) when 53 hips were at risk,
and at 23 years was 56.1% (95% CI 49.4 to 62.8), when 22 hips remained
at risk. These long-term results are considered satisfactory for
the reconstruction of an acetabulum presenting with inadequate bone
stock and circumferential segmental defects. Cite this article:
Revision surgery of the hip was performed on 114 hips using an extensively porous-coated femoral component. Of these, 95 hips (94 patients) had a mean follow-up of 10.2 years (5 to 17). No cortical struts were used and the cortical index and the femoral cortical width were measured at different levels. There were two revisions for aseptic loosening. Survivorship at 12 years for all causes of failure was 96.9% (95% confidence interval 93.5 to 100) in the best-case scenario. Fibrous or unstable fixation was associated with major bone defects. The cortical index (p = 0.045) and the lateral cortical thickness (p = 0.008) decreased at the proximal level over time while the medial cortex increased (p = 0.001) at the proximal and distal levels. An increase in the proximal medial cortex was found in patients with an extended transtrochanteric osteotomy (p = 0.026) and in those with components shorter than 25 cm (p = 0.008). The use of the extensively porous-coated femoral component can provide a solution for difficult cases in revision surgery. Radiological bony ingrowth is common. Although without clinical relevance at the end of follow-up, the thickness of the medial femoral cortex often increased while that of the lateral cortex decreased. In cases in which a shorter component was used and in those undertaken using an extended trochanteric osteotomy, there was a greater increase in thickness of the femoral cortex over time.
We retrospectively reviewed 44 consecutive patients
(50 hips) who underwent acetabular re-revision after a failed previous
revision that had been performed using structural or morcellised
allograft bone, with a cage or ring for uncontained defects. Of
the 50 previous revisions, 41 cages and nine rings were used with
allografts for 14 minor-column and 36 major-column defects. We routinely
assessed the size of the acetabular bone defect at the time of revision
and re-revision surgery. This allowed us to assess whether host
bone stock was restored. We also assessed the outcome of re-revision
surgery in these circumstances by means of radiological characteristics,
rates of failure and modes of failure. We subsequently investigated
the factors that may affect the potential for the restoration of bone
stock and the durability of the re-revision reconstruction using
multivariate analysis. At the time of re-revision, there were ten host acetabula with
no significant defects, 14 with contained defects, nine with minor-column,
seven with major-column defects and ten with pelvic discontinuity.
When bone defects at re-revision were compared with those at the
previous revision, there was restoration of bone stock in 31 hips, deterioration
of bone stock in nine and remained unchanged in ten. This was a
significant improvement (p <
0.001). Morselised allografting
at the index revision was not associated with the restoration of
bone stock. In 17 hips (34%), re-revision was possible using a simple acetabular
component without allograft, augments, rings or cages. There were
47 patients with a mean follow-up of 70 months (6 to 146) available
for survival analysis. Within this group, the successful cases had
a minimum follow-up of two years after re-revision. There were 22 clinical
or radiological failures (46.7%), 18 of which were due to aseptic
loosening. The five and ten year Kaplan–Meier survival rate was
75% (95% CI, 60 to 86) and 56% (95% CI, 40 to 70) respectively with
aseptic loosening as the endpoint. The rate of aseptic loosening
was higher for hips with pelvic discontinuity (p = 0.049) and less
when the allograft had been in place for longer periods (p = 0.040). The use of a cage or ring over structural allograft bone for
massive uncontained defects in acetabular revision can restore host
bone stock and facilitate subsequent re-revision surgery to a certain
extent. Cite this article:
Hip replacement is a very successful operation and the outcome is usually excellent. There are recognised complications that seem increasingly to give rise to litigation. This paper briefly examines some common scenarios where litigation may be pursued against hip surgeons. With appropriate record keeping, consenting and surgical care, the claim can be successfully defended if not avoided. We hope this short summary will help to highlight some common pitfalls. There is extensive literature available for detailed study.
The increasing need for total hip replacement
(THR) in an ageing population will inevitably generate a larger number
of revision procedures. The difficulties encountered in dealing
with the bone deficient acetabulum are amongst the greatest challenges
in hip surgery. The failed acetabular component requires reconstruction
to restore the hip centre and improve joint biomechanics. Impaction
bone grafting is successful in achieving acetabular reconstruction
using both cemented and cementless techniques. Bone graft incorporation
restores bone stock whilst providing good component stability. We
provide a summary of the evidence and current literature regarding impaction
bone grafting using both cemented and cementless techniques in revision
THR. Cite this article:
We investigated 219 revisions of total hip replacement (THR) in 211 patients using a collarless double-taper cemented femoral component. The mean age of the patients was 72 years (30 to 90). The 137 long and 82 standard length stems were analysed separately. The mean follow-up was six years (2 to 18), and no patient was lost to follow-up. Survival of the long stems to re-revision for aseptic loosening at nine years was 98% (95% confidence interval (CI) 94 to 100), and for the standard stems was 93% (95% CI 85 to 100). At five years, one long stem was definitely loose radiologically and one standard stem was probably loose. Pre-operative femoral bone deficiency did not influence the results for the long stems, and corrective femoral osteotomy was avoided, as were significant subsidence, major stress shielding and persistent thigh pain. Because of these reliable results, cemented long collarless double-taper femoral components are recommended for routine revision THR in older patients.
The conventional method for reconstructing acetabular
bone loss at revision surgery includes using structural bone allograft.
The disadvantages of this technique promoted the advent of metallic
but biocompatible porous implants to fill bone defects enhancing
initial and long-term stability of the acetabular component. This
paper presents the indications, surgical technique and the outcome
of using porous metal acetabular augments for reconstructing acetabular
defects. Cite this article:
In this retrospective study we evaluated the
proficiency of shelf autograft in the restoration of bone stock
as part of primary total hip replacement (THR) for hip dysplasia,
and in the results of revision arthroplasty after failure of the primary
arthroplasty. Of 146 dysplastic hips treated by THR and a shelf
graft, 43 were revised at an average of 156 months, 34 of which
were suitable for this study (seven hips were excluded because of
insufficient bone-stock data and two hips were excluded because
allograft was used in the primary THR). The acetabular bone stock
of the hips was assessed during revision surgery. The mean implant–bone
contact was 58% (50% to 70%) at primary THR and 78% (40% to 100%)
at the time of the revision, which was a significant improvement
(p <
0.001). At primary THR all hips had had a segmental acetabular
defect >
30%, whereas only five (15%) had significant segmental
bone defects requiring structural support at the time of revision.
In 15 hips (44%) no bone graft or metal augments were used during
revision. A total of 30 hips were eligible for the survival study. At a
mean follow-up of 103 months (27 to 228), two aseptic and two septic
failures had occurred. Kaplan-Meier survival analysis of the revision
procedures demonstrated a ten-year survival rate of 93.3% (95% confidence
interval (CI) 78 to 107) with clinical or radiological failure as
the endpoint. The mean Oxford hip score was 38.7 (26 to 46) for
non-revised cases at final follow-up. Our results indicate that the use of shelf autografts during
THR for dysplastic hips restores bone stock, contributing to the
favourable survival of the revision arthroplasty should the primary
procedure fail. Cite this article:
Between 1990 and 2000, 123 hips in 110 patients were reconstructed for aseptic loosening using impaction bone grafting with frozen, irradiated, morsellised femoral heads and cemented acetabular components. This series was reported previously at a mean follow-up of five years. We have extended this follow-up and now describe the outcome of 86 hips in 74 patients at a mean of ten years. There have been 19 revisions, comprising nine for infection, seven for aseptic loosening and three for dislocation. In surviving acetabular reconstructions, union of the graft had occurred in 64 of 67 hips (95.5%). Survival analysis for all indications at ten years was 83.3% (95% confidence interval (CI) 68 to 89) and 71.3% (95% CI 58 to 84) at 15 years. Acetabular reconstruction using irradiated allograft and a cemented acetabular component is an effective method of reconstruction, providing results in the medium- to long-term comparable with those of reported series where non-irradiated freshly-frozen bone was used.