Advertisement for orthosearch.org.uk
Results 1 - 50 of 97
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 830 - 834
1 Jun 2009
Pinskerova V Samuelson KM Stammers J Maruthainar K Sosna A Freeman MAR

There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120° and 160° of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120° to 160° the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160° the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160° of flexion. Neither the events between 120° and 160° nor the anatomy at 160° could result from a continuation of the kinematics up to 120°. Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0° to 160°


Bone & Joint Research
Vol. 6, Issue 3 | Pages 179 - 185
1 Mar 2017
Wu JH Thoreson AR Gingery A An KN Moran SL Amadio PC Zhao C

Objectives. The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model. Methods. Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young’s modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey’s post hoc multiple-comparison test. Results. We observed no significant difference in cross-sectional area or in Young’s modulus among the four study groups. In addition, histological sections showed that the BMSCs were aligned well and viable on the tendon slices after two-week culture in groups three and four. Expression levels of several extracellular matrix tendon growth factors, including collagen type I, collagen type III, and matrix metalloproteinase were significantly higher in group four than in group three (p < 0.05). Conclusion. Lateral slits introduced into de-cellularised tendon is a promising method of delivery of BMSCs without compromising cell viability and tendon mechanical properties. In addition, mechanical stimulation of a cell-seeded tendon can promote cell proliferation and enhance expression of collagen types I and III in vitro. Cite this article: J. H. Wu, A. R. Thoreson, A. Gingery, K. N. An, S. L. Moran, P. C. Amadio, C. Zhao. The revitalisation of flexor tendon allografts with bone marrow stromal cells and mechanical stimulation: An ex vivo model revitalising flexor tendon allografts. Bone Joint Res 2017;6:179–185. DOI: 10.1302/2046-3758.63.BJR-2016-0207.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 925 - 931
1 Aug 2004
Pinskerova V Johal P Nakagawa S Sosna A Williams A Gedroyc W Freeman MAR

MRI studies of the knee were performed at intervals between full extension and 120° of flexion in six cadavers and also non-weight-bearing and weight-bearing in five volunteers. At each interval sagittal images were obtained through both compartments on which the position of the femoral condyle, identified by the centre of its posterior circular surface which is termed the flexion facet centre (FFC), and the point of closest approximation between the femoral and tibial subchondral plates, the contact point (CP), were identified relative to the posterior tibial cortex. The movements of the CP and FFC were essentially the same in the three groups but in all three the medial differed from the lateral compartment and the movement of the FFC differed from that of the CP. Medially from 30° to 120° the FFC and CP coincided and did not move anteroposteriorly. From 30° to 0° the anteroposterior position of the FFC remained unchanged but the CP moved forwards by about 15 mm. Laterally, the FFC and the CP moved backwards together by about 15 mm from 20° to 120°. From 20° to full extension both the FFC and CP moved forwards, but the latter moved more than the former. The differences between the movements of the FFC and the CP could be explained by the sagittal shapes of the bones, especially anteriorly. The term ‘roll-back’ can be applied to solid bodies, e.g. the condyles, but not to areas. The lateral femoral condyle does roll-back with flexion but the medial does not, i.e. the femur rotates externally around a medial centre. By contrast, both the medial and lateral contact points move back, roughly in parallel, from 0° to 120° but they cannot ‘roll’. Femoral roll-back with flexion, usually imagined as backward rolling of both condyles, does not occur


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 3 | Pages 450 - 456
1 Apr 2004
Nakagawa S Johal P Pinskerova V Komatsu T Sosna A Williams A Freeman MAR

The posterior cruciate ligament (PCL) was imaged by MRI throughout flexion in neutral tibial rotation in six cadaver knees, which were also dissected, and in 20 unloaded and 13 loaded living (squatting) knees. The appearance of the ligament was the same in all three groups. In extension the ligament is curved concave-forwards. It is straight, fully out-to-length and approaching vertical from 60° to 120°, and curves convex-forwards over the roof of the intercondylar notch in full flexion. Throughout flexion the length of the ligament does not change, but the separations of its attachments do. We conclude that the PCL is not loaded in the unloaded cadaver knee and therefore, since its appearance in all three groups is the same, that it is also unloaded in the living knee during flexion. The posterior fibres may be an exception in hyperextension, probably being loaded either because of posterior femoral lift-off or because of the forward curvature of the PCL. These conclusions relate only to everyday life: none may be drawn with regard to more strenuous activities such as sport or in trauma


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1165 - 1170
1 Aug 2010
Hirpara KM Sullivan PJ O’Sullivan ME

We split 100 porcine flexor tendons into five groups of 20 tendons for repair. Three groups were repaired using the Pennington modified Kessler technique, the cruciate or the Savage technique, one using one new device per tendon and the other with two new devices per tendon. Half of the tendons received supplemental circumferential Silfverskiöld type B cross-stitch. The repairs were loaded to failure and a record made of their bulk, the force required to produce a 3 mm gap, the maximum force applied before failure and the stiffness. When only one device was used repairs were equivalent to the Pennington modified Kessler for all parameters except the force to produce a 3 mm gap when supplemented with a circumferential repair, which was equivalent to the cruciate. When two devices were used the repair strength was equivalent to the cruciate repair, and when the two-device repair was supplemented with a circumferential suture the force to produce a 3 mm gap was equivalent to that of the Savage six-strand technique


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims. Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. Methods. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis. Results. There was no significant difference in post-traumatic contracture between the rosiglitazone and control groups (33° (standard deviation (. sd. ) 11) vs 37° (. sd. 14), respectively; p = 0.4). There was no difference in number or percentage of myofibroblasts. Importantly, there were ten genes and 17 pathways that were significantly modulated by rosiglitazone in the posterior capsule. Discussion. Rosiglitazone significantly altered the genetic expression of the posterior capsular tissue in a rabbit model, with ten genes and 17 pathways demonstrating significant modulation. However, there was no significant effect on biomechanical or histological properties. Cite this article: M. P. Abdel. Effectiveness of rosiglitazone in reducing flexion contracture in a rabbit model of arthrofibrosis with surgical capsular release: A biomechanical, histological, and genetic analysis. Bone Joint Res 2016;5:11–17. doi: 10.1302/2046-3758.51.2000593


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1528 - 1533
1 Nov 2007
Jeffcote B Nicholls R Schirm A Kuster MS

Achieving deep flexion after total knee replacement remains a challenge. In this study we compared the soft-tissue tension and tibiofemoral force in a mobile-bearing posterior cruciate ligament-sacrificing total knee replacement, using equal flexion and extension gaps, and with the gaps increased by 2 mm each. The tests were conducted during passive movement in five cadaver knees, and measurements of strain were made simultaneously in the collateral ligaments. The tibiofemoral force was measured using a customised mini-force plate in the tibial tray. Measurements of collateral ligament strain were not very sensitive to changes in the gap ratio, but tibiofemoral force measurements were. Tibiofemoral force was decreased by a mean of 40% (. sd. 10.7) after 90° of knee flexion when the flexion gap was increased by 2 mm. Increasing the extension gap by 2 mm affected the force only in full extension. Because increasing the range of flexion after total knee replacement beyond 110° is a widely-held goal, small increases in the flexion gap warrant further investigation


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1199 - 1200
1 Nov 2000
Nakagawa S Kadoya Y Todo S Kobayashi A Sakamoto H Freeman MAR Yamano Y

We studied active flexion from 90° to 133° and passive flexion to 162° using MRI in 20 unloaded knees in Japanese subjects. Flexion over this arc is accompanied by backward movement of the medial femoral condyle of 4.0 mm and by backward movement laterally of 15 mm, i.e., by internal rotation of the tibia. At 162° the lateral femoral condyle lies posterior to the tibia


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 2 | Pages 301 - 307
1 Mar 2004
Özgenel GY

We have investigated the effects of the intra-operative application of a combination of hyaluronic acid and amniotic membrane on adhesions in the flexor tendons of a chicken model. We used 144 tendons which were partially divided and then repaired by a modified Kessler technique. There were four test groups: group 1, simple tendon repair, group 2, repair site wrapped with amniotic membrane, group 3, hyaluronic acid injected around the repair site, and group 4, repair site wrapped with amniotic membrane and hyaluronic acid injected within it. At three and six weeks, the extent of the adhesions and the healing of the tendon were evaluated macroscopically and histologically. The range of movement of the toe and tensile strength of the repaired tendons were measured at 20 weeks. The least adhesions were observed in group 4 but no significant difference was found in the healing of the tendons. Overall, the intra-operative application of a combination of hyaluronic acid and amniotic membrane appears to be effective in preventing adhesions of the flexor tendon


Bone & Joint 360
Vol. 13, Issue 1 | Pages 44 - 45
1 Feb 2024
Marson BA

This edition of the Cochrane Corner looks at the three reviews that were published in the second half of 2023: surgical versus non-surgical interventions for displaced intra-articular calcaneal fractures; cryotherapy following total knee arthroplasty; and physical activity and education about physical activity for chronic musculoskeletal pain in children and adolescents.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 514 - 521
1 Aug 2017
Mannering N Young T Spelman T Choong PF

Objectives. Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D in vivo knee kinematics has not been fully described. The purpose of this prospective study was to understand better the spatiotemporal and 3D knee kinematic changes induced by slow compared with normal self-selected walking speeds within young healthy adults. Methods. A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired t-tests, Wilcoxon signed-rank tests, Mann-Whitney U tests and Spearman’s rank correlation coefficients were conducted using Stata/IC 14 to compare kinematics of slow versus self-selected walking speed. Results. Both cadence and step length were reduced during slow gait compared with normal gait. Slow walking reduced flexion during standing (10.6° compared with 13.7°; p < 0.0001), and flexion range of movement (ROM) (53.1° compared with 57.3°; p < 0.0001). Slow walking also induced less adduction ROM (8.3° compared with 10.0°; p < 0.0001), rotation ROM (11.4. °. compared with 13.6. °. ; p < 0.0001), and anteroposterior translation ROM (8.5 mm compared with 10.1 mm; p < 0.0001). Conclusion. The reduced spatiotemporal measures, reduced flexion during stance, and knee ROM in all planes induced by slow walking demonstrate a stiff knee gait, similar to that previously demonstrated in osteoarthritis. Further research is required to determine if these characteristics induced in healthy knees by slow walking provide a valid model of osteoarthritic gait. Cite this article: N. Mannering, T. Young, T. Spelman, P. F. Choong. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res 2017;6:514–521. DOI: 10.1302/2046-3758.68.BJR-2016-0296.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 8 | Pages 1171 - 1175
1 Aug 2010
Hajipour L Gulihar A Dias J

We carried out lacerations of 50%, followed by trimming, in ten turkey flexor tendons in vitro and measured the coefficient of friction at the tendon-pulley interface with loads of 200 g and 400 g and in 10°, 30°, 50° and 70° of flexion. Laceration increased the coefficient of friction from 0.12 for the intact tendon to 0.3 at both the test loads. Trimming the laceration reduced the coefficient of friction to 0.2. An exponential increase in the gliding resistance was found at 50° and 70° of flexion (p = 0.02 and p = 0.003, respectively) following trimming compared to that of the intact tendon. We concluded that trimming partially lacerated flexor tendons will reduce the gliding resistance at the tendon-pulley interface, but will lead to fragmentation and triggering of the tendon at higher degrees of flexion and loading. We recommend that higher degrees of flexion be avoided during early post-operative rehabilitation following trimming of a flexor tendon


Bone & Joint Research
Vol. 5, Issue 11 | Pages 577 - 585
1 Nov 2016
Hase E Sato K Yonekura D Minamikawa T Takahashi M Yasui T

Objectives. This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. Materials and Methods. A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation. Results. While the SHG light intensity of the healing tendon samples was significantly lower than that of the uninjured tendon samples, 2D Fourier transform SHG images showed a clear difference in collagen fibre structure between the uninjured and the healing samples, and among the healing samples. The mean intensity of the SHG image showed a moderate correlation (R. 2. = 0.37) with Young’s modulus obtained from the tensile testing. Conclusion. Our results indicate that SHG microscopy may be a potential indicator of tendon healing. Cite this article: E. Hase, K. Sato, D. Yonekura, T. Minamikawa, M. Takahashi, T. Yasui. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing. Bone Joint Res 2016;5:577–585. DOI: 10.1302/2046-3758.511.BJR-2016-0162.R1


Bone & Joint 360
Vol. 10, Issue 3 | Pages 38 - 39
1 Jun 2021
Das A


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 577 - 582
1 Apr 2005
Senavongse W Amis AA

Normal function of the patellofemoral joint is maintained by a complex interaction between soft tissues and articular surfaces. No quantitative data have been found on the relative contributions of these structures to patellar stability. Eight knees were studied using a materials testing machine to displace the patella 10 mm laterally and medially and measure the force required. Patellar stability was tested from 0° to 90° knee flexion with the quadriceps tensed to 175 N. Four conditions were examined: intact, vastus medialis obliquus relaxed, flat lateral condyle, and ruptured medial retinaculae. Abnormal trochlear geometry reduced the lateral stability by 70% at 30° flexion, while relaxation of vastus medialis obliquus caused a 30% reduction. Ruptured medial retinaculae had the largest effect at 0° flexion with 49% reduction. There was no effect on medial stability. There is a complex interaction between these structures, with their contributions to loss of lateral patellar stability varying with knee flexion


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1460 - 1465
1 Oct 2010
Rauh PB Clancy WG Jasper LE Curl LA Belkoff S Moorman CT

We evaluated two reconstruction techniques for a simulated posterolateral corner injury on ten pairs of cadaver knees. Specimens were mounted at 30° and 90° of knee flexion to record external rotation and varus movement. Instability was created by transversely sectioning the lateral collateral ligament at its midpoint and the popliteus tendon was released at the lateral femoral condyle. The left knee was randomly assigned for reconstruction using either a combined or fibula-based treatment with the right knee receiving the other. After sectioning, laxity increased in all the specimens. Each technique restored external rotatory and varus stability at both flexion angles to levels similar to the intact condition. For the fibula-based reconstruction method, varus laxity at 30° of knee flexion did not differ from the intact state, but was significantly less than after the combined method. Both the fibula-based and combined posterolateral reconstruction techniques are equally effective in restoring stability following the simulated injury


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 408 - 412
1 Mar 2007
Ma H Lu Y Kwok T Ho F Huang C Huang C

One of the most controversial issues in total knee replacement is whether or not to resurface the patella. In order to determine the effects of different designs of femoral component on the conformity of the patellofemoral joint, five different knee prostheses were investigated. These were Low Contact Stress, the Miller-Galante II, the NexGen, the Porous-Coated Anatomic, and the Total Condylar prostheses. Three-dimensional models of the prostheses and a native patella were developed and assessed by computer. The conformity of the curvature of the five different prosthetic femoral components to their corresponding patellar implants and to the native patella at different angles of flexion was assessed by measuring the angles of intersection of tangential lines. The Total Condylar prosthesis had the lowest conformity with the native patella (mean 8.58°; 0.14° to 29.9°) and with its own patellar component (mean 11.36°; 0.55° to 39.19°). In the other four prostheses, the conformity was better (mean 2.25°; 0.02° to 10.52°) when articulated with the corresponding patellar component. The Porous-Coated Anatomic femoral component showed better conformity (mean 6.51°; 0.07° to 9.89°) than the Miller-Galante II prosthesis (mean 11.20°; 5.80° to 16.72°) when tested with the native patella. Although the Nexgen prosthesis had less conformity with the native patella at a low angle of flexion, this improved at mid (mean 3.57°; 1.40° to 4.56°) or high angles of flexion (mean 4.54°; 0.91° to 9.39°), respectively. The Low Contact Stress femoral component had the best conformity with the native patella (mean 2.39°; 0.04° to 4.56°). There was no significant difference (p > 0.208) between the conformity when tested with the native patella or its own patellar component at any angle of flexion. The geometry of the anterior flange of a femoral component affects the conformity of the patellofemoral joint when articulating with the native patella. A more anatomical design of femoral component is preferable if the surgeon decides not to resurface the patella at the time of operation


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 173 - 179
1 Jan 1998
Race A Amis AA

We compared the ability of three different posterior cruciate ligament (PCL) reconstructions to restore normal anteroposterior laxity to the knee from 0 to 130° of knee flexion. Cadaver knees were tested intact, after PCL rupture or after bone-patellar tendon-bone grafting. Grafts were performed isometrically or with a single bundle representing the anatomical anterior PCL fibre bulk (aPC) or with a double bundle that added the posterior PCL fibre bulk (pPC). The grafts were tensioned to restore normal knee laxity at 60° of flexion, except for the pPC which was tensioned at 130°. The isometric graft led to overconstraint as the knee extended resulting in high graft tension in extension and excess laxity in flexion. The aPC graft matched normal laxity from 0 to 60° of flexion but was lax from 90 to 130° of flexion. Only the double-bundled graft could restore normal knee laxity across the full range of flexion


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 736 - 740
1 May 2005
Tochigi Y Rudert MJ Brown TD McIff TE Saltzman CL

When performing the Scandinavian Total Ankle Replacement (STAR), the positioning of the talar component and the selection of mobile-bearing thickness are critical. A biomechanical experiment was undertaken to establish the effects of these variables on the range of movement (ROM) of the ankle. Six cadaver ankles containing a specially-modified STAR prosthesis were subjected to ROM determination, under weight-bearing conditions, while monitoring the strain in the peri-ankle ligaments. Each specimen was tested with the talar component positions in neutral, as well as 3 and 6 mm of anterior and posterior displacement. The sequence was repeated with an anatomical bearing thickness, as well as at 2 mm reduced and increased thicknesses. The movement limits were defined as 10% strain in any ligament, bearing lift-off from the talar component or limitations of the hardware. Both anterior talar component displacement and bearing thickness reduction caused a decrease in plantar flexion, which was associated with bearing lift-off. With increased bearing thickness, posterior displacement of the talar component decreased plantar flexion, whereas anterior displacement decreased dorsiflexion


Bone & Joint Research
Vol. 4, Issue 11 | Pages 176 - 180
1 Nov 2015
Mirghasemi SA Rashidinia S Sadeghi MS Talebizadeh M Rahimi N

Objectives. There are various pin-in-plaster methods for treating fractures of the distal radius. The purpose of this study is to introduce a modified technique of ‘pin in plaster’. Methods. Fifty-four patients with fractures of the distal radius were followed for one year post-operatively. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than seven days after injury. Range of movement and functional results were evaluated at three and six months and one and two years post-operatively. Radiographic parameters including radial inclination, tilt, and height, were measured pre- and post-operatively. Results. The average radial tilt was 10.6° of volar flexion and radial height was 10.2 mm at the sixth month post-operatively. Three cases of pin tract infection were recorded, all of which were treated successfully with oral antibiotics. There were no cases of pin loosening. A total of 73 patients underwent surgery, and three cases of radial nerve irritation were recorded at the time of cast removal. All radial nerve palsies resolved at the six-month follow-up. There were no cases of median nerve compression or carpal tunnel syndrome, and no cases of tendon injury. Conclusion. Our modified technique is effective to restore anatomic congruity and maintain reduction in fractures of the distal radius. Cite this article: Bone Joint Res 2015;4:176–180


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1196 - 1198
1 Nov 2000
Hill PF Vedi V Williams A Iwaki H Pinskerova V Freeman MAR

In 13 unloaded living knees we confirmed the findings previously obtained in the unloaded cadaver knee during flexion and external rotation/internal rotation using MRI. In seven loaded living knees with the subjects squatting, the relative tibiofemoral movements were similar to those in the unloaded knee except that the medial femoral condyle tended to move about 4 mm forwards with flexion. Four of the seven loaded knees were studied during flexion in external and internal rotation. As predicted, flexion (squatting) with the tibia in external rotation suppressed the internal rotation of the tibia which had been observed during unloaded flexion


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, . sd. 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, . sd. 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, . sd. 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, . sd. 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, . sd. 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1189 - 1195
1 Nov 2000
Iwaki H Pinskerova V Freeman MAR

In six unloaded cadaver knees we used MRI to determine the shapes of the articular surfaces and their relative movements. These were confirmed by dissection. Medially, the femoral condyle in sagittal section is composed of the arcs of two circles and that of the tibia of two angled flats. The anterior facets articulate in extension. At about 20° the femur ‘rocks’ to articulate through the posterior facets. The medial femoral condyle does not move anteroposteriorly with flexion to 110°. Laterally, the femoral condyle is composed entirely, or almost entirely, of a single circular facet similar in radius and arc to the posterior medial facet. The tibia is roughly flat. The femur tends to roll backwards with flexion. The combination during flexion of no antero-posterior movement medially (i.e., sliding) and backward rolling (combined with sliding) laterally equates to internal rotation of the tibia around a medial axis with flexion. About 5° of this rotation may be obligatory from 0° to 10° flexion; thereafter little rotation occurs to at least 45°. Total rotation at 110° is about 20°, most if not all of which can be suppressed by applying external rotation to the tibia at 90°


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 2 | Pages 351 - 359
1 Mar 1998
Lund T Oxland TR Jost B Cripton P Grassmann S Etter C Nolte L

We performed a biomechanical study on human cadaver spines to determine the effect of three different interbody cage designs, with and without posterior instrumentation, on the three-dimensional flexibility of the spine. Six lumbar functional spinal units for each cage type were subjected to multidirectional flexibility testing in four different configurations: intact, with interbody cages from a posterior approach, with additional posterior instrumentation, and with cross-bracing. The tests involved the application of flexion and extension, bilateral axial rotation and bilateral lateral bending pure moments. The relative movements between the vertebrae were recorded by an optoelectronic camera system. We found no significant difference in the stabilising potential of the three cage designs. The cages used alone significantly decreased the intervertebral movement in flexion and lateral bending, but no stabilisation was achieved in either extension or axial rotation. For all types of cage, the greatest stabilisation in flexion and extension and lateral bending was achieved by the addition of posterior transpedicular instrumentation. The addition of cross-bracing to the posterior instrumentation had a stabilising effect on axial rotation. The bone density of the adjacent vertebral bodies was a significant factor for stabilisation in flexion and extension and in lateral bending


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 609 - 617
1 May 2001
Wilke H Kemmerich V Claes LE Arand M

Fusion is the main goal in the surgical management of the injured and unstable spine. A wide variety of implants is available to enhance this. Our study was performed to evaluate the stabilising characteristics of several anterior, posterior and combined systems of fixation. Six thoracolumbar (T11 to L2) spines from 13-week-old calves were first tested intact. Then the vertebral body of T13 was removed and the defect replaced and supported by a wooden block to simulate bone grafting. Dorsal implants consisting of a Universal Spine System (USS) fracture system and an AO Fixateur interne (AOFI), and ventral implants comprising of a Kaneda Classic, a Kaneda SR, a prototype of the VentroFix single clamp/single rod construct (SC/SR) and the VentroFix single clamp/double rod construct (SC/DR) were first implanted individually to stabilise the removal of the vertebral body. Simulating the combined anteroposterior stabilisations, all ventral implants were combined with the AOFI. The range of motion (ROM) was measured under loads of up to 7.5 Nm. The load was applied in a custom-made spine tester in the three primary directions while measuring the intervertebral movements using a goniometric linkage system. The dorsal systems limited ROM in flexion below 0.9° and in extension between 3.3° and 3.6° (median values). The improved Kaneda System SR yielded a mean ROM of 1.8° in flexion and in extension. The median rotation found with the VentroFix (SC/DR) was 3.2° for flexion and 2.8° for extension. Reinforcement of the ventral constructs with a dorsal system reduced the ROM in flexion and extension in all cases to 0.4° and lower. In rotation, the median ROM of the anterior systems ranged from 2.7° to 5.1° and for the posterior systems from 3.9° to 5.7°, while the combinations provided a ROM of 1.2° to 1.9°. In lateral bending, the posterior implants restricted movement to 1.1°, whereas the anterior implants allowed up to 5.2°. The combined systems provided the highest stability at less than 0.6°. Our study revealed distinct differences between posterior and anterior approaches in all primary directions. Also, different stabilisation characteristics were found within the anterior and posterior groups. Combinations of these two approaches provided the highest stability in all directions


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 6 | Pages 918 - 924
1 Aug 2004
Nishida J Araki S Akasaka T Toba T Shimamura T Amadio PC An K

The excursion resistance between the tendon and pulley is an important factor contributing to the limitation of function after surgery to the hand. The administration of hyaluronic acid (HA) in the early rehabilitation after tendon grafting may help to prevent adhesions. We evaluated changes in the excursion resistance between potential sources of flexor tendon grafts and the annular pulley in a canine model after administration of HA. The intrasynovial and extrasynovial tendons were soaked in 10 mg/ml of HA for five minutes. The excursion resistance between these tendons and the annular pulley of an intact proximal phalanx and that of the same tendons of the opposite foot without administration of HA were evaluated. The tendon of flexor digitorum profundus of the second toe without administration of HA was used as a control. The gliding resistance of canine tendons was significantly decreased after the administration of HA especially in the extrasynovial tendons. Our findings suggest that the administration of HA may improve the gliding function of a flexor tendon graft


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 7 | Pages 1075 - 1081
1 Sep 2002
Bull AMJ Earnshaw PH Smith A Katchburian MV Hassan ANA Amis AA

Our objectives were to establish the envelope of passive movement and to demonstrate the kinematic behaviour of the knee during standard clinical tests before and after reconstruction of the anterior cruciate ligament (ACL). An electromagnetic device was used to measure movement of the joint during surgery. Reconstruction of the ACL significantly reduced the overall envelope of tibial rotation (10° to 90° flexion), moved this envelope into external rotation from 0° to 20° flexion, and reduced the anterior position of the tibial plateau (5° to 30° flexion) (p < 0.05 for all). During the pivot-shift test in early flexion there was progressive anterior tibial subluxation with internal rotation. These subluxations reversed suddenly around a mean position of 36 ± 9° of flexion of the knee and consisted of an external tibial rotation of 13 ± 8° combined with a posterior tibial translation of 12 ± 8 mm. This abnormal movement was abolished after reconstruction of the ACL


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 5 | Pages 900 - 906
1 Sep 1998
Miller RK Goodfellow JW Murray DW O’Connor JJ

Using a new, non-invasive method, we measured the patellofemoral force (PFF) in cadaver knees mounted in a rig to simulate weight-bearing. The PFF was measured from 20° to 120° of flexion before and after implanting three designs of knee prosthesis. Medial unicompartmental arthroplasty with a meniscal-bearing prosthesis and with retention of both cruciate ligaments caused no significant change in the PFF. After arthroplasty with a posterior-cruciate-retaining prosthesis and division of the anterior cruciate ligament, the PFF decreased in extension and increased by 20% in flexion. Implantation of a posterior stabilised prosthesis and division of both cruciate ligaments produced a decrease in the PFF in extension but maintained normal load in flexion. There was a direct relationship between the PFF and the angle made with the patellar tendon and the long axis of the tibia. The abnormalities of the patellar tendon angle which resulted from implantation of the two total prostheses explain the observed changes in the PFF and show how the mechanics of the patellofemoral joint depend upon the kinematics of the tibiofemoral articulation


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1466 - 1470
1 Oct 2010
Didden K Luyckx T Bellemans J Labey L Innocenti B Vandenneucker H

The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee. We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion > 90°. From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 6 | Pages 1057 - 1066
1 Nov 1998
Westrich GH Specht LM Sharrock NE Windsor RE Sculco TP Haas SB Trombley JF Peterson M

We performed a crossover study to evaluate the haemodynamic effect of active dorsal to plantar flexion and seven pneumatic compression devices in ten patients who had a total knee arthroplasty. Using the Acuson 128XP/10 duplex ultrasound unit with a 5MHz linear array probe, we assessed the augmentation of peak venous velocity and venous volume above and below the junction of the greater saphenous and common femoral veins in order to study both the deep and superficial venous systems. The pneumatic compression devices evaluated included two foot pumps (A-V Impulse System and PlexiPulse Foot), a foot-calf pump (PlexiPulse Foot-Calf), a calf pump (VenaFlow System) and three calf-thigh pumps (SCD System, Flowtron DVT and Jobst Athrombic Pump). The devices differed in a number of ways, including the length and location of the sleeve and bladder, the frequency and duration of activation, the rate of pressure rise, and the maximum pressure achieved. A randomisation table was used to determine the order of the test conditions for each patient. The enhancement of peak venous velocity occurred primarily in the deep venous system below the level of the saphenofemoral junction. The increases in peak venous velocity were as follows: active dorsal to plantar flexion 175%; foot pumps, A-V Impulse System 29% and PlexiPulse 65%; foot-calf pump, PlexiPulse, 221%; calf pump, VenaFlow, 302% and calf-thigh pumps, Flowtron DVT 87%, SCD System 116% and Jobst Athrombic Pump 263%. All the devices augmented venous volume, the greatest effect being seen with those incorporating calf compression. The increases in ml/min were found in the deep venous system as follows: foot pumps, A-V Impulse System 9.6 and PlexiPulse Foot 16.7; foot-calf pump, PlexiPulse, 38.1; calf pump, VenaFlow, 26.2; calf-thigh pumps, Flowtron DVT 61.5, SCD System 34.7 and Jobst Athrombic Pump 82.3. Active dorsal to plantar flexion generated 8.5 ml for a single calf contraction


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 8 | Pages 1114 - 1118
1 Aug 2008
Ling ZX Kumar VP

Compartment syndrome of the foot requires urgent surgical treatment. Currently, there is still no agreement on the number and location of the myofascial compartments of the foot. The aim of this cadaver study was to provide an anatomical basis for surgical decompression in the event of compartment syndrome. We found that there were three tough vertical fascial septae that extended from the hindfoot to the midfoot on the plantar aspect of the foot. These septae separated the posterior half of the foot into three compartments. The medial compartment containing the abductor hallucis was surrounded medially by skin and subcutaneous fat and laterally by the medial septum. The intermediate compartment, containing the flexor digitorum brevis and the quadratus plantae more deeply, was surrounded by the medial septum medially, the intermediate septum laterally and the main plantar aponeurosis on its plantar aspect. The lateral compartment containing the abductor digiti minimi was surrounded medially by the intermediate septum, laterally by the lateral septum and on its plantar aspect by the lateral band of the main plantar aponeurosis. No distinct myofascial compartments exist in the forefoot. Based on our findings, in theory, fasciotomy of the hindfoot compartments through a modified medial incision would be sufficient to decompress the foot


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 5 | Pages 765 - 773
1 Jul 2003
Gupte CM Bull AMJ Thomas RD Amis AA

We have tested the hypothesis that the meniscofemoral ligaments make a significant contribution to resisting anteroposterior and rotatory laxity of the posterior-cruciate-ligament-deficient knee. Eight cadaver human knees were tested for anteroposterior and rotatory laxity in a materials-testing machine. The posterior cruciate ligament (PCL) was then divided, followed by division of the meniscofemoral ligaments (MFLs). Laxity results were obtained for intact, PCL-deficient, and PCL-MFL-deficient knees. Division of the MFLs in the PCL-deficient knee increased posterior laxity between 15° and 90° of flexion. Force-displacement measurements showed that the MFLs contributed 28% to the total force resisting posterior drawer at 90° of flexion in the intact knee, and 70.1% in the PCL-deficient knee. There was no effect on rotatory laxity. This is the first study which shows a function for the MFLs as secondary restraints to posterior tibial translation. The integrity of these structures should be assessed during both imaging and arthroscopic studies of PCL-injured knees since this may affect the diagnosis and management of such injuries


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 2 | Pages 292 - 298
1 Mar 2003
Pasque C Noyes FR Gibbons M Levy M Grood E

Techniques for the selective cutting of ligaments in cadaver knees defined the static contributions of the posterolateral structures to external rotation, varus rotation and posterior tibial translation from 0° to 120° of flexion under defined loading conditions. Sectioning of the popliteofibular ligament (PFL) (group 1) produced no significant changes in the limits of the knee movement studied. Sectioning of the PFL and the popliteus tendon (femoral attachment, group 2) produced an increase of only 5° to 6° in external rotation from flexion of 30° to 120° (p < 0.001). Even when other ligaments were sectioned first (group 3), the maximum effect of the PFL was negligible. Our findings show that the popliteus muscle-tendon-ligament complex, lateral collateral ligament, and posterolateral capsular structures function as a unit. No individual structure alone is the primary restraint for the movements studied. Operative reconstruction should address all of the posterolateral structures, since restoration of only a portion may result in residual instability


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1012 - 1018
1 Jul 2005
Beck M Kalhor M Leunig M Ganz R

Recently, femoroacetabular impingement has been recognised as a cause of early osteoarthritis. There are two mechanisms of impingement: 1) cam impingement caused by a non-spherical head and 2) pincer impingement caused by excessive acetabular cover. We hypothesised that both mechanisms result in different patterns of articular damage. Of 302 analysed hips only 26 had an isolated cam and 16 an isolated pincer impingement. Cam impingement caused damage to the anterosuperior acetabular cartilage with separation between the labrum and cartilage. During flexion, the cartilage was sheared off the bone by the non-spherical femoral head while the labrum remained untouched. In pincer impingement, the cartilage damage was located circumferentially and included only a narrow strip. During movement the labrum is crushed between the acetabular rim and the femoral neck causing degeneration and ossification. Both cam and pincer impingement lead to osteoarthritis of the hip. Labral damage indicates ongoing impingement and rarely occurs alone


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 607 - 613
1 May 2002
Martelli S Pinskerova V

We report a study of the shapes of the tibial and femoral articular surfaces in sagittal, frontal and coronal planes which was performed on cadaver knees using two techniques, MRI and computer interpolation of sections of the articular surfaces acquired by a three-dimensional digitiser. The findings using MRI, confirmed in a previous study by dissection, were the same as those using the digitiser. Thus both methods appear to be valid anatomical tools. The tibial and femoral articular surfaces can be divided into anterior segments, contacting from 0° to 20 ± 10° of flexion, and posterior segments, contacting from 20 ± 10° to 120° of flexion. The medial and lateral compartments are asymmetrical, particularly anteriorly. Posteromedially, the femur is spherical and is located in a conforming, but partly deficient, tibial socket. Posterolaterally, it is circular only in the sagittal section and the tibia is flat centrally, sloping downwards both anteriorly and posteriorly to receive the meniscal horns. Anteromedially, the femur is convex with a sagittal radius larger than that posteriorly, while the tibia is flat sloping upwards and forwards. Anterolaterally, both the femoral and tibial surfaces are largely deficient. These shapes suggest that medially the femur can rotate on the tibia through three axes intersecting in the middle of the femoral sphere, but that the sphere can only translate anteroposteriorly and even then to a limited extent. Laterally, the femur can freely translate anteroposteriorly, but can only rotate around a transverse axis for that part of the arc, i.e., near extension, during which it comes into contact with the tibia through its flattened distal/medial surface as against its spherical posterior surface


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1539 - 1544
1 Nov 2007
Hibino N Hamada Y Sairyo K Yukata K Sano T Yasui N

This study was undertaken to elucidate the mechanism of biological repair at the tendon-bone junction in a rat model. The stump of the toe flexor tendon was sutured to a drilled hole in the tibia (tendon suture group, n = 23) to investigate healing of the tendon-bone junction both radiologically and histologically. Radiological and histological findings were compared with those observed in a sham control group where the bone alone was drilled (n = 19). The biomechanical strength of the repaired junction was confirmed by pull-out testing six weeks after surgery in four rats in the tendon suture group. Callus formation was observed at the site of repair in the tendon suture group, whereas in the sham group callus formation was minimal. During the pull-out test, the repaired tendon-bone junction did not fail because the musculotendinous junction always disrupted first. In order to understand the factors that influenced callus formation at the site of repair, four further groups were evaluated. The nature of the sutured tendon itself was investigated by analysing healing of a tendon stump after necrosis had been induced with liquid nitrogen in 16 cases. A proximal suture group (n = 16) and a partial tenotomy group (n = 16) were prepared to investigate the effects of biomechanical loading on the site of repair. Finally, a group where the periosteum had been excised at the site of repair (n = 16) was examined to study the role of the periosteum. These four groups showed less callus formation radiologically and histologically than did the tendon suture group. In conclusion, the sutured tendon-bone junction healed and achieved mechanical strength at six weeks after suturing, showing good local callus formation. The viability of the tendon stump, mechanical loading and intact periosteum were all found to be important factors for better callus formation at a repaired tendon-bone junction


Bone & Joint Research
Vol. 7, Issue 8 | Pages 511 - 516
1 Aug 2018
Beverly M Mellon S Kennedy JA Murray DW

Objectives

We studied subchondral intraosseous pressure (IOP) in an animal model during loading, and with vascular occlusion. We explored bone compartmentalization by saline injection.

Materials and Methods

Needles were placed in the femoral condyle and proximal tibia of five anaesthetized rabbits and connected to pressure recorders. The limb was loaded with and without proximal vascular occlusion. An additional subject had simultaneous triple recordings at the femoral head, femoral condyle and proximal tibia. In a further subject, saline injections at three sites were carried out in turn.


Objectives

Preservation of both anterior and posterior cruciate ligaments in total knee arthroplasty (TKA) can lead to near-normal post-operative joint mechanics and improved knee function. We hypothesised that a patient-specific bicruciate-retaining prosthesis preserves near-normal kinematics better than standard off-the-shelf posterior cruciate-retaining and bicruciate-retaining prostheses in TKA.

Methods

We developed the validated models to evaluate the post-operative kinematics in patient-specific bicruciate-retaining, standard off-the-shelf bicruciate-retaining and posterior cruciate-retaining TKA under gait and deep knee bend loading conditions using numerical simulation.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 8 | Pages 1201 - 1203
1 Nov 2000
Karrholm J Brandsson S Freeman MAR

We studied the knees of 11 volunteers using RSA during a step-up exercise requiring extension while weight-bearing from 50° to 0°. The findings on weight-bearing flexion with and without external rotation of the tibia based on MRI were confirmed


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 583 - 587
1 Apr 2005
Szöke G Lee S Simpson AHRW Prescott J

Little is known about the increase in length of tendons in postnatal life or of their response to limb lengthening procedures. A study was carried out in ten young and nine adult rabbits in which the tibia was lengthened by 20% at two rates 0.8 mm/day and 1.6 mm/day. The tendon of the flexor digitorum longus (FDL) muscle showed a significant increase in length in response to lengthening of the tibia. The young rabbits exhibited a significantly higher increase in length in the FDL tendon compared with the adults. There was no difference in the amount of lengthening of the FDL tendon at the different rates. Of the increase in length which occurred, 77% was in the proximal half of the tendon. This investigation demonstrated that tendons have the ability to lengthen during limb distraction. This occurred to a greater extent in the young who showed a higher proliferative response, suggesting that there may be less need for formal tendon lengthening in young children


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives

The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field.

Methods

The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only.


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 7 | Pages 1054 - 1058
1 Sep 2000
Khan U Kakar S Akali A Bentley G McGrouther DA

The formation of restrictive adhesions around the musculotendinous unit after injury is one of the most vexing processes faced by the surgeon. In flexor tendons it has been shown that the synovial tissue is the source of aggressive fibroblasts which contribute to this process. Using a rabbit model, we have examined the effects of treating the synovial sheath with the antimetabolite 5-fluorouracil (5-FU) for five minutes. Inflammatory, proliferative and molecular markers were compared in the response of the treated and control tendons to injury. Compared with a control group we found that the proliferative and inflammatory responses were significantly reduced (p < 0.001) in the treated tendons. Not only was there a reduction in the cellular and cytokine response, but there also was a significant (p < 0.001) reduction in the level of activity of the known pro-scarring agent, transforming growth factor beta 1 (TGF-β1). These pilot studies indicate that the formation of restrictive adhesions may be modulated using a simple single-touch technique in the hope of producing a better return of function


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 2 | Pages 300 - 304
1 Mar 2002
Nötzli HP Siebenrock KA Hempfing A Ramseier LE Ganz R

We used laser Doppler flowmetry (LDF) with a high energy (20 mW) laser to measure perfusion of the femoral head intraoperatively in 32 hips. The surgical procedure was joint debridement requiring dislocation or subluxation of the hip. The laser probe was placed within the anterosuperior quadrant of the femoral head. Blood flow was monitored in specific positions of the hip before and after dislocation or subluxation. With the femoral head reduced, external rotation, both in extension and flexion, caused a reduction of blood flow. During subluxation or dislocation, it was impaired when the posterosuperior femoral neck was allowed to rest on the posterior acetabular rim. A pulsatile signal returned when the hip was reduced, or was taken out of extreme positions when dislocated. After the final reduction, the signal amplitudes were first slightly lower (12%) compared with the initial value but tended to be restored to the initial levels within 30 minutes. Most of the changes in the signal can be explained by compromise of the extraosseous branches of the medial femoral circumflex artery and are reversible. Our study shows that LDF provides proof for the clinical observation that perfusion of the femoral head is maintained after dislocation if specific surgical precautions are followed


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 109 - 113
1 Jan 1997
Kuster MS Wood GA Stachowiak GW Gächter A

Estimates of knee joint loadings were calculated for 12 normal subjects from kinematic and kinetic measures obtained during both level and downhill walking. The maximum tibiofemoral compressive force reached an average load of 3.9 times body-weight (BW) for level walking and 8 times BW for downhill walking, in each instance during the early stance phase. Muscle forces contributed 80% of the maximum bone-on-bone force during downhill walking and 70% during level walking whereas the ground reaction forces contributed only 20% and 30% respectively. Most total knee designs provide a tibiofemoral contact area of 100 to 300 mm. 2. The yield point of these polyethylene inlays will therefore be exceeded with each step during downhill walking. Future evaluation of total knee designs should be based on a tibiofemoral joint load of 3.5 times BW at 20° knee flexion, 8 times BW at 40° and 6 times BW at 60°


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 700 - 704
1 Jul 1999
Sochart DH Hardinge K

We have studied the relationship between movements of the foot and ankle and venous blood flow from the lower limb using colourflow Duplex ultrasound to determine the optimum type of exercise for promoting venous return. Studies of both active and passive movements were carried out on 40 limbs in 20 subjects (18 men; 2 women), with a median age of 27 years (20 to 54). We assessed ankle dorsiflexion and plantar flexion, subtalar inversion and eversion, and a combination of all movements. There was no difference in venous flow when comparing opposite limbs in a single subject (p > 0.5), but active exercises produced higher peak and mean velocities of blood flow than passive ones. The active combined movement produced the highest velocities with an increase of 38% in mean and of 58% in peak flow velocities, which were significantly greater than the peak and mean flow rates produced by passive movements. The active combined exercise would therefore be the most effective in eliminating stasis and could contribute to the prevention of deep-vein thrombosis


Bone & Joint 360
Vol. 6, Issue 5 | Pages 39 - 40
1 Oct 2017
Das A


Bone & Joint Research
Vol. 6, Issue 8 | Pages 522 - 529
1 Aug 2017
Ali AM Newman SDS Hooper PA Davies CM Cobb JP

Objectives

Unicompartmental knee arthroplasty (UKA) is a demanding procedure, with tibial component subsidence or pain from high tibial strain being potential causes of revision. The optimal position in terms of load transfer has not been documented for lateral UKA. Our aim was to determine the effect of tibial component position on proximal tibial strain.

Methods

A total of 16 composite tibias were implanted with an Oxford Domed Lateral Partial Knee implant using cutting guides to define tibial slope and resection depth. Four implant positions were assessed: standard (5° posterior slope); 10° posterior slope; 5° reverse tibial slope; and 4 mm increased tibial resection. Using an electrodynamic axial-torsional materials testing machine (Instron 5565), a compressive load of 1.5 kN was applied at 60 N/s on a meniscal bearing via a matching femoral component. Tibial strain beneath the implant was measured using a calibrated Digital Image Correlation system.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 301 - 306
1 Jul 2016
Madhuri V Santhanam M Rajagopal K Sugumar LK Balaji V

Objectives

To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population.

Patients and Methods

A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations.


Bone & Joint Research
Vol. 6, Issue 3 | Pages 162 - 171
1 Mar 2017
Walker JA Ewald TJ Lewallen E Van Wijnen A Hanssen AD Morrey BF Morrey ME Abdel MP Sanchez-Sotelo J

Objectives

Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated in vivo animal model of knee arthrofibrosis.

Materials and Methods

A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.


Bone & Joint Research
Vol. 6, Issue 2 | Pages 98 - 107
1 Feb 2017
Kazemi D Shams Asenjan K Dehdilani N Parsa H

Objectives

Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model.

Methods

Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value < 0.05 considered statistically significant.