Aims. The aim of this study was to radiologically evaluate the quality of cement mantle and alignment achieved with a polished tapered cemented
Polished taper-slip (PTS) cemented stems have an excellent clinical track record and are the most common stem type used in primary total hip arthroplasty (THA) in the UK. Due to low rates of aseptic loosening, they have largely replaced more traditional composite beam (CB) cemented stems. However, there is now emerging evidence from multiple joint registries that PTS stems are associated with higher rates of postoperative periprosthetic femoral fracture (PFF) compared to their CB stem counterparts. The risk of both intraoperative and postoperative PFF remains greater with uncemented stems compared to either of these cemented stem subtypes. PFF continues to be a devastating complication following primary THA and is associated with high complication and mortality rates. Recent efforts have focused on identifying implant-related risk factors for PFF in order to guide preventative strategies, and therefore the purpose of this article is to present the current evidence on the effect of cemented
Aims. The Exeter V40 cemented
Aims. The direct anterior (DA) approach has been associated with rapid patient recovery after total hip arthroplasty (THA) but may be associated with more frequent femoral complications including implant loosening. The objective of this study was to determine whether the addition of a collar to the
Aims. The Exeter V40 cemented polished tapered stem system has demonstrated excellent long-term outcomes. This paper presents a systematic review of the existing literature and reports on a large case series comparing implant fractures between the Exeter V40 series; 125 mm and conventional length stem systems. Methods. A systematic literature search was performed adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. In parallel, we performed a retrospective single centre study of Exeter V40
Aims. The aim of this study was to compare the design of the generic
OptiStem XTR
Aims.
Aims. Refobacin Bone Cement R and Palacos R + G bone cement were introduced to replace the original cement Refobacin Palacos R in 2005. Both cements were assumed to behave in a biomechanically similar fashion to the original cement. The primary aim of this study was to compare the migration of a polished triple-tapered
Aims. The Exeter V40
Following the recall of modular neck hip stems
in July 2012, research into femoral modularity will intensify over
the next few years. This review aims to provide surgeons with an
up-to-date summary of the clinically relevant evidence. The development
of femoral modularity, and a classification system, is described.
The theoretical rationale for modularity is summarised and the clinical
outcomes are explored. The review also examines the clinically relevant problems
reported following the use of
Aims. The aim of this study was to evaluate the survival of a collarless, straight, hydroxyapatite-coated femoral stem in total hip arthroplasty (THA) at a minimum follow-up of 20 years. Methods. We reviewed the results of 165 THAs using the Omnifit HA system in 138 patients, performed between August 1993 and December 1999. The mean age of the patients at the time of surgery was 46 years (20 to 77). Avascular necrosis was the most common indication for THA, followed by ankylosing spondylitis and primary osteoarthritis. The mean follow-up was 22 years (20 to 31). At 20 and 25 years, 113 THAs in 91 patients and 63 THAs in 55 patients were available for review, respectively, while others died or were lost to follow-up. Kaplan-Meier analysis was performed to evaluate the survival of the stem. Radiographs were reviewed regularly, and the stability of the stem was evaluated using the Engh classification. Results. A total of seven stems (4.2%) were revised during the study period: one for aseptic loosening, three for periprosthetic fracture, two for infection, and one for recurrent dislocation. At 20 years, survival with revision of the stem for any indication and for aseptic loosening as the endpoint was 96.0% (95% confidence interval (CI) 92.6 to 99.5) and 98.4% (95% CI 96.2 to 100), respectively. At 25 years, the corresponding rates of survival were 94.5% (95% CI 89.9 to 99.3) and 98.1% (95% CI 95.7 to 99.6), respectively. There was radiological evidence of stable bony fixation in 86 stems (76.1%) and evidence of loosening in four (3.5%) at 20 years. All patients with radiological evidence of loosening were asymptomatic. Conclusion. The Omnifit HA
Aims. Compared with primary total hip arthroplasty (THA), revision
surgery can be challenging. The cement-in-cement femoral revision
technique involves removing a femoral component from a well-fixed
femoral cement mantle and cementing a new stem into the original
mantle. This technique is widely used and when carried out for the
correct indications, is fast, relatively inexpensive and carries
a reduced short-term risk for the patient compared with the alternative
of removing well-fixed cement. We report the outcomes of this procedure
when two commonly used
The removal of well-fixed bone cement from the femoral canal during revision of a total hip replacement (THR) can be difficult and risks the loss of excessive bone stock and perforation or fracture of the femoral shaft. Retaining the cement mantle is attractive, yet the technique of cement-in-cement revision is not widely practised. We have used this procedure at our hospital since 1989. The stems were removed to gain a better exposure for acetabular revision, to alter version or leg length, or for component incompatibility. We studied 136 hips in 134 patients and followed them up for a mean of eight years (5 to 15). A further revision was required in 35 hips (25.7%), for acetabular loosening in 26 (19.1%), sepsis in four, instability in three, femoral fracture in one and stem fracture in one. No
Aims. BoneMaster is a thin electrochemically applied hydroxyapatite (HA) coating for orthopaedic implants that is quickly resorbed during osseointegration. Early stabilization is a surrogacy marker of good survival of
Version of the
We identified five (2.3%) fractures of the stem in a series of 219 revision procedures using a cementless, cylindrical, extensively porous-coated, distally-fixed
We report on 397 consecutive revision total hip
replacements in 371 patients with a mean clinical and radiological follow-up
of 12.9 years (10 to 17.7). The mean age at surgery was 69 years
(37 to 93). A total of 28 patients (8%) underwent further revision,
including 16 (4%) femoral components. In all 223 patients (56%,
233 hips) died without further revision and 20 patients (5%, 20
hips) were lost to follow-up. Of the remaining patients, 209 (221
hips) were available for clinical assessment and 194 (205 hips)
for radiological review at mean follow-up of 12.9 years (10 to 17.7). The mean Harris Hip Score improved from 58.7 (11 to 92) points
to 80.7 (21 to 100) (p <
0.001) and the mean Merle d’Aubigné and
Postel hip scores at final follow-up were 4.9 (2 to 6), 4.5 (2 to
6) and 4.3 (2 to 6), respectively for pain, mobility and function.
Radiographs showed no lucencies around 186 (90.7%) femoral stems
with stable bony ingrowth seen in 199 stems (97%). The survival
of the S-ROM
Aims. Although good clinical outcomes have been reported for monolithic tapered, fluted, titanium stems (TFTS), early results showed high rates of subsidence. Advances in stem design may mitigate these concerns. This study reports on the use of a current monolithic TFTS for a variety of indications. Methods. A multi-institutional retrospective study of all consecutive total hip arthroplasty (THA) and revision total hip arthroplasty (rTHA) patients who received the monolithic TFTS was conducted. Surgery was performed by eight fellowship-trained arthroplasty surgeons at four institutions. A total of 157 hips in 153 patients at a mean follow-up of 11.6 months (SD7.8) were included. Mean patient age at the time of surgery was 67.4 years (SD 13.3) and mean body mass index (BMI) was 28.9 kg/m. 2. (SD 6.5). Outcomes included intraoperative complications, one-year all-cause re-revisions, and subsidence at postoperative time intervals (two weeks, six weeks, six months, nine months, and one year). Results. There were eight intraoperative complications (4.9%), six of which were intraoperative fractures; none occurred during stem insertion. Six hips (3.7%) underwent re-revision within one year; only one procedure involved removal of the prosthesis due to infection. Mean total subsidence at latest follow-up was 1.64 mm (SD 2.47). Overall, 17 of 144 stems (11.8%) on which measurements could be performed had >5 mm of subsidence, and 3/144 (2.1%) had >10 mm of subsidence within one year. A univariate regression analysis found that additional subsidence after three months was minimal. A multivariate regression analysis found that subsidence was not significantly associated with periprosthetic fracture as an indication for surgery, the presence of an extended trochanteric osteotomy (ETO), Paprosky classification of
In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data.Aims
Methods
A reduced femoral offset in total hip replacement has been thought to be disadvantageous. We reviewed the results of 54 consecutive primary total hip replacements in 49 patients (mean age of 68 years) performed between August 1990 and December 1994, with a mean follow-up of 8.8 years (. sd. 2.1). The mean pre-operative femoral offset for these hips was 41 mm (. sd. 7.4). All patients received a low-offset Charnley stem and a polyethylene cup inserted by a single surgeon. At their latest follow-up, surviving patients had a significant improvement in the performance of their hip. Three had undergone revision, one each for deep infection, recurrent dislocation and late pain with subluxation. No hips had been revised, or were at risk of revision, for aseptic loosening. The mean annual linear rate of wear was 0.2 mm (. sd. 0.08) for the whole group. There was no correlation between the pre-operative femoral offset and the post-operative rate of wear. Our survivorship estimate was 91% when revision for any reason was taken as an end-point, but 100% if aseptic loosening was considered as the end-point. Our study demonstrates that a low-offset
Aims. Periprosthetic fracture (PF) after primary total hip arthroplasty
(THA) is an uncommon but potentially devastating complication. This
study aims to investigate the influence of cemented stem designs
on the risk of needing a revision for a PF. Patients and Methods. We analysed data on 257 202 primary THAs with cemented stems
and 390 linked first revisions for PF recorded in the National Joint
Registry (NJR) of England, Wales and Northern Ireland to determine
if a cemented
We performed a case–control study to compare
the rates of further surgery, revision and complications, operating time
and survival in patients who were treated with either an uncemented
hydroxyapatite-coated Corail bipolar
Hydroxyapatite-coated standard anatomical and customised
We have carried out a prospective, randomised study designed to compare the long-term stability of the stem of cementless femoral implants with differing surface configurations. A total of 50 hips (46 patients) was randomised into two groups, according to whether the medullary stem had been grit blasted (GB) or coated with hydroxyapatite (HA). Both femoral prostheses were of the same geometrical design. We used Ein Bild Roentgen Analyse femoral component analysis (EBRA-FCA) to assess the stability of the stem. The mean follow-up was for 8.66 years. The mean migration of the stem was 1.26 mm in the HA group compared with 2.57 mm in the GB group (Mann-Whitney U test, p = 0.04). A mixed model ANOVA showed that the development of subsidence was statistically different in the two groups during the first 24 months. After this subsidence increased in both groups with no difference between them. Our results indicate that, with the same design of stem, HA coating enhanced the stability of the
We have compared prospectively the incidence of loosening of 20
We analysed revised Mathys isoelastic polyacetal
Traditional techniques for the insertion of
We report the initial results of an ongoing randomised, prospective study on migration of the Exeter and Elite Plus
We report an unusual complication of late dislocation of a total hip replacement. The
We report the clinical and operative details of seven cases of fracture of the
We describe the results at five years of a prospective study of a new tri-tapered polished, cannulated, cemented
We have examined 26 retrieved, failed titanium-alloy
CT and advanced computer-aided design techniques offer the means for designing customised
United Classification System (UCS) B2 and B3 periprosthetic fractures in total hip arthroplasties (THAs) have been commonly managed with modular tapered stems. No study has evaluated the use of monoblock fluted tapered titanium stems for this indication. This study aimed to evaluate the effects of a monoblock stems on implant survivorship, postoperative outcomes, radiological outcomes, and osseointegration following treatment of THA UCS B2 and B3 periprosthetic fractures. A retrospective review was conducted of all patients who underwent revision THA (rTHA) for periprosthetic UCS B2 and B3 periprosthetic fracture who received a single design monoblock fluted tapered titanium stem at two large, tertiary care, academic hospitals. A total of 72 patients met inclusion and exclusion criteria (68 UCS B2, and four UCS B3 fractures). Primary outcomes of interest were radiological stem subsidence (> 5 mm), radiological osseointegration, and fracture union. Sub-analysis was also done for 46 patients with minimum one-year follow-up.Aims
Methods
We compared the radiological appearances and survival of four methods of fixation of a
From 1983 to 1985 we performed 114 primary hip replacements in 108 consecutive osteoarthritic patients using a non-cemented RM isoelastic
Our aim was to determine the precision of the measurements of bone mineral density (BMD) by dual-energy x-ray absorptiometry in the proximal femur before and after implantation of an uncemented implant, with particular regard to the significance of retro- and prospective studies. We examined 60 patients to determine the difference in preoperative BMD between osteoarthritic and healthy hips. The results showed a preoperative BMD of the affected hip which was lower by a mean of 4% and by a maximum of 9% compared with the opposite side. In addition, measurements were made in the operated hip before and at ten days after operation to determine the effect of the implantation of an uncemented custom-made
We have compared the changes in the pattern of the principal strains in the proximal femur after insertion of eight uncemented anatomical stems and eight customised stems in human cadaver femora. During testing we aimed to reproduce the physiological loads on the proximal femur and to simulate single-leg stance and stair-climbing. The strains in the intact femora were measured and there were no significant differences in principal tensile and compressive strains in the left and right femora of each pair. The two types of
We report the theoretical basis of a method to measure axial migration of femoral components of total hip replacements (THR). The use of the top of the greater trochanter and a lateral point on the collar of the stem, allowing for variations of up to 10 degrees rotation of the femur in any direction between successive radiographs, gave a maximum error of 0.37 mm. At a more realistic 5 degrees rotational variation, the error was only 0.13 mm. These data were confirmed in an experimental study using digitisation of points and special software. We also showed that the centre of the femoral head, the stem tip, and the lesser trochanter provided less accurate landmarks. In a second study we digitised a series of radiographs of 51 Charnley and 57 Stanmore THRs; the mean migration rates were found to be identical. We then studied 46 successful stems with a minimum follow-up of eight years and 46 stems which had failed by aseptic loosening at different times. At two years, the successful stems had migrated by a mean of 1.45 +/- 0.68 mm, but the failed cases had a mean migration of 4.32 +/- 2.58 mm (p <
0.0001). Of the successful cases 76% had migrated less than 2 mm, while in the failed group 84% had migrated more than 2 mm. For any particular case migration of more than 2.6 mm at two years had only a 5% chance of continuing success and would therefore merit special follow-up. Only 24% of the eventually successful stems showed migration at the stem-cement interface, but this had happened in every failed stem. We conclude that it would be possible to evaluate a new cemented design of
Femoral revision after cemented total hip replacement
(THR) might include technical difficulties, following essential cement
removal, which might lead to further loss of bone and consequently
inadequate fixation of the subsequent revision
We describe the clinical and radiological results of 120 consecutive revision hip replacements in 107 patients, using the JRI Furlong hydroxyapatite-ceramic-coated femoral component. The mean age of the patients at operation was 71 years (36 to 92) and the mean length of follow-up 8.0 years (5.0 to 12.4). We included patients on whom previous revision hip surgery had taken place. The patients were independently reviewed and scored using the Harris hip score, the Western Ontario and McMaster Universities osteoarthritis index (WOMAC) and the Charnley modification of the Merle d’Aubigné and Postel score. Radiographs were assessed by three reviewers for the formation of new bone, osteolysis, osseointegration and radiolucent lines in each Gruen zone. The mean Harris hip score was 85.8 (42 to 100) at the latest post-operative review. The mean WOMAC and Merle d’Aubigné and Postel scores were 34.5 and 14.8, respectively. The mean visual analogue score for pain (possible range 0 to 10) was 1.2 overall, but 0.5 specifically for mid-thigh pain. There were no revisions of the femoral component for aseptic loosening. There were four re-revisions, three for infection and one for recurrent dislocation. Radiological review of all the femoral components, including the four re-revisions showed stable bony ingrowth and no new radiolucent lines in any zone. Using revision or impending revision for aseptic loosening as an end-point, the cumulative survival of the femoral component at ten years was 100% (95% confidence interval 94 to 100). We present excellent medium- to long-term clinical, radiological and survivorship results with the fully hydroxyapatite-ceramic-coated femoral component in revision hip surgery.
Cemented titanium stems in hip arthroplasty are associated with proximal cement-stem debonding and early failure. This was well publicised with the 3M Capital hip. However, corrosion in this setting has been reported with only one stem design and is less widely accepted. We present a series of 12 cemented titanium Furlong Straight Stems which required revision at a mean of 78 months for thigh pain. At revision the stems were severely corroded in a pattern which was typical of crevice corrosion. Symptoms were eliminated after revision to an all-stainless steel femoral prosthesis of the same design. We discuss the likely causes for the corrosion. The combination of a titanium stem and cement appears to facilitate crevice corrosion.
We describe the development and early clinical application of a ported, proximally-cemented titanium stem for cemented total hip arthroplasty. PMMA bone cement is delivered to the proximal femur under pressure after the stem has been positioned within the femoral canal. A mid-stem cement occluder contains the cement to the proximal stem only. A tapered body is incorporated in the design of the stem to reduce the structural stiffness and hence the degree of stress shielding within the reconstructed joint. We performed preclinical studies to measure the reduction in porosity and the pressurisation achieved. The porosity, as measured by the void percentage within the cured cement mantle, was reduced by more than 50% and there was an almost threefold increase in the mean pressure. Mechanical testing of the stem, using a three-point bend test, showed that the addition of cement injection ports on the anterior and posterior sides of the body of the proximal stem did not reduce its strength. Finite-element analysis indicated that, compared with a fully-cemented conventional stem, there was no change in the stresses within the cement mantle. In a series of 40 proximally-cemented stems followed for up to six years (mean 51 months) the mean Harris hip score was 91, and 85% of patients had good or excellent results. There was excellent pain relief, an increased level of activity and good patient satisfaction. One mechanical failure of the stem required revision at three years after implantation. The early results indicate that the clinical performance was equal to that achieved with other modern cemented stems. Radiological evaluation showed excellent results with no evidence of stress shielding. Further follow-up will determine if long-term stress shielding is reduced and if revision is made easier by the absence of a distal cement mantle.
We describe the survivorship of the Exeter femoral component in a District General Hospital. Between 1994 and 1996, 230 Exeter Universal cemented femoral components were implanted in 215 patients who were reviewed at a mean of 11.2 years (10 to 13). We used one acetabular implant, the Elite Ogee component, in 218 of the 230 hips. During the period of this study 76 patients (79 hips) died. Of the remaining 139 patients (151 hips), 121 were able to attend for radiological analysis at a minimum of ten years. One patient was lost to follow-up. No femoral component was revised for aseptic loosening. Three hips were revised for deep infection and six acetabular components required revision, four for loosening and two for recurrent dislocation. Taking the ‘worst-case scenario’ including the one patient lost to follow-up, the overall survival rate was 94.4% at 13 years. Our results confirm excellent medium-term results for the Exeter Universal femoral component, implanted in a general setting. The excellent survival of this femoral component, when used in combination with the Ogee acetabular component, suggests that this is a successful pairing.
We describe the clinical and radiological results of 38 total hip replacements (THR) using the JRI Furlong hydroxyapatite-ceramic (HAC)-coated femoral component in patients younger than 50 years. The mean age at the time of operation was 42 years (22 to 49) and the mean length of follow-up was ten years (63 to 170 months). All patients receiving a Furlong HAC THR were entered into the study regardless of the primary pathology including patients who had undergone previous hip surgery. The mean Harris hip score improved from 44 before operation to 92 at the last postoperative review. After 12 years the cumulative surivival for the stem was 100% (95% confidence interval 89 to 100). No femoral component was revised. Our results show that the Furlong HAC implant gives excellent long-term results in young patients with high demands.
We studied the effect of the surface finish of the stem on the transfer of load in the proximal femur in a sheep model of cemented hip arthroplasty. Strain-gauge analysis and corresponding finite-element (FE) analysis were performed to assess the effect of friction and creep at the cement-stem interface. No difference was seen between the matt and polished stems. FE analysis showed that the effects of cement creep and friction at the stem-cement interface on femoral strain were small compared with the effect of inserting a cemented stem.