When the present study was initiated, we changed the treatment for late-detected developmental dislocation of the hip (DDH) from several weeks of skin traction to markedly shorter traction time. The aim of this prospective study was to evaluate this change, with special emphasis on the rate of stable closed reduction according to patient age, the development of the acetabulum, and the outcome at skeletal maturity. From 1996 to 2005, 49 children (52 hips) were treated for late-detected DDH. Their mean age was 13.3 months (3 to 33) at reduction. Prereduction skin traction was used for a mean of 11 days (0 to 27). Gentle closed reduction under general anaesthesia was attempted in all the hips. Concurrent pelvic osteotomy was not performed. The hips were evaluated at one, three and five years after reduction, at age eight to ten years, and at skeletal maturity. Mean age at the last follow-up was 15.7 years (13 to 21).Aims
Methods
The use of joint-preserving surgery of the hip
has been largely abandoned since the introduction of total hip replacement.
However, with the modification of such techniques as pelvic osteotomy,
and the introduction of intracapsular procedures such as surgical
hip dislocation and arthroscopy, previously unexpected options for
the surgical treatment of sequelae of childhood conditions, including
developmental dysplasia of the hip, slipped upper femoral epiphysis
and Perthes’ disease, have become available. Moreover, femoroacetabular
impingement has been identified as a significant aetiological factor
in the development of osteoarthritis in many hips previously considered to
suffer from primary osteoarthritis. As mechanical causes of degenerative joint disease are now recognised
earlier in the disease process, these techniques may be used to
decelerate or even prevent progression to osteoarthritis. We review
the recent development of these concepts and the associated surgical
techniques. Cite this article:
We report the use of a 15° face-changing cementless
acetabular component in patients undergoing total hip replacement
for osteoarthritis secondary to developmental dysplasia of the hip.
The rationale behind its design and the surgical technique used
for its implantation are described. It is distinctly different from
a standard cementless hemispherical component as it is designed
to position the bearing surface at the optimal angle of inclination,
that is, <
45°, while maximising the cover of the component by
host bone.
Total hip replacement for high dislocation of the hip joint remains technically difficult in terms of preparation of the true acetabulum and restoration of leg length. We describe our experience of cementless total hip replacement combined with a subtrochanteric femoral shortening osteotomy in 20 hips with Crowe grade IV dislocation with a mean follow-up of 8.1 years (4 to 11.5). There was one man and 17 women with a mean age of 55 years (44 to 69) at the time of the operation. After placment of the acetabular component at the site of the natural acetabulum, a cementless porous-coated cylindrical femoral component was implanted following a subtrochanteric femoral shortening osteotomy. The mean Japanese Orthopedic Association hip score improved from a mean of 38 (22 to 62) to a mean of 83 points (55 to 98) at the final follow-up. The mean lengthening of the leg was 14.8 mm (−9 to 34) in patients with iliofemoral osteoarthritis and 35.3 mm (15 to 51) in patients with no arthritic changes. No nerve palsy was observed. Total hip replacement combined with subtrochanteric shortening femoral osteotomy in this situation is beneficial in avoiding nerve injury and still permits valuable improvement in inequality of leg length.
We treated 26 hips (24 consecutive patients) with residual dysplasia by a technique of incomplete triple pelvic osteotomy. The mean age of the patients was 21.6 years. The mean values for the pre-operative centre-edge angle of Wiberg, the refined centre-edge angle, the acetabular angle of Sharp, the modified acetabular angle and femoral head lateralisation were 7.7°, −3.1°, 49.3°, 53.2° and 17.2 mm, respectively. After a mean follow-up of 3.3 years they were 27.0°, 13.0°, 38.9°, 44.3° and 15.9 mm, respectively (p <
0.05). The osteoarthritic grading changed adversely in one hip. The mean pre-operative and latest Harris hip scores were 74.9 and 93.0, respectively (p <
0.05). This technique provides a stable osteotomy with maintenance of the posterior column which allows early mobilisation and minimal internal fixation. The technique is not complex and requires minimal blood transfusion. The use of an image intensifier is not necessary and harvesting of a subcristal bone graft avoids post-operative complications at the donor site.
We have investigated the accuracy of placement of the femoral component using imageless navigation in 100 consecutive Birmingham Hip Resurfacings. Pre-operative templating determined the native neck-shaft angle and planned stem-shaft angle of the implant. The latter were verified post-operatively using digital anteroposterior unilateral radiographs of the hip. The mean neck-shaft angle determined before operation was 132.7° (118° to 160°). The mean planned stem-shaft angle was a relative valgus alignment of 9.7° ( Navigation in hip resurfacing may afford the surgeon a reliable and accurate method of placement of the femoral component.